67 research outputs found

    Genome-wide expression and genomic data integration analyses in sporadic Parkinson disease

    Full text link
    Thesis (Ph.D.)--Boston UniversityParkinson disease (PD) is the second most common neurodegenerative disorder, affecting an estimated 2% of the population above 65 years of age. Although familial forms of PD have been linked to specific mutations responsible for the onset of the disease, the majority of PD cases is still of unknown etiology. PD has been traditionally studied using individual genetic methods, such as linkage analysis, genome-wide association (GWAS), or microarray expression studies. Nevertheless, the intrinsic disease genetic variability, and the unilateral analysis approach of available datasets made the detection of robust gene or pathway signals difficult. Studies of PD that combine a range of systems genetics approaches, and integrate complementary disease-relevant genetic datasets, represent a promising approach for accommodating prior inconsistent, as well as diverse results. To investigate the genetics of idiopathic PD, I performed the largest genome-wide expression study in brain tissue to date. The study was carried out on the 1-color Agilent 60-mer Whole Human Genome Microarray, and included 26 neurologically healthy control and 27 PD samples from the frontal cortex Brodmann 9 area (BA9). The selected brain samples were of high quality (high pH and RNA integrity, no significant signs of Alzheimer disease pathology), and had rich documentation of neuropathological and clinical information available. I analyzed the microarray expression results in combination with genotyping data for PD-associated single nucleotide polymorphisms obtained for the microarray brain samples, and detected a pathway of interest for PD involving the FOXO1 (Forkhead box protein O1) gene. This result was verified in additional publically available expression datasets. I then performed a network-based canonical pathway analysis of PD, combining results from available GWAS, microarray expression, and animal model expression studies. The used analysis framework was a human functional-linkage network (FLN), consisting of genes as nodes, and weighted links indicating the confidence of gene-pair involvement in similar biological processes. I demonstrated the relevance of the used FLN for studying PD. Additionally, I ranked genes and pathways based on the available disease datasets. The frontal cortex BA9 study, and an additional non-PD microarray study were used as the positive and negative controls, respectively, for the obtained results

    Predictors of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients:Observations From a Multicenter Data Set

    Get PDF
    A table containing information on the qRT-PCR performed with seven novel miRNAs and two known miRNAs. Per miRNA, this information includes mean CT, range of CT, cDNA dilution, the number of samples (of 12) with CT < 40, the average read depth, and primer used. (XLSX 8 kb

    Cyclin-G-associated kinase modifies alpha-synuclein expression levels and toxicity in Parkinson's disease: results from the GenePD Study

    Get PDF
    Although family history is a well-established risk factor for Parkinson's disease (PD), fewer than 5% of PD cases can be attributed to known genetic mutations. The etiology for the remainder of PD cases is unclear; however, neuronal accumulation of the protein α-synuclein is common to nearly all patients, implicating pathways that influence α-synuclein in PD pathogenesis. We report a genome-wide significant association (P = 3.97 × 10−8) between a polymorphism, rs1564282, in the cyclin-G-associated kinase (GAK) gene and increased PD risk, with a meta-analysis odds ratio of 1.48. This association result is based on the meta-analysis of three publicly available PD case–control genome-wide association study and genotyping from a new, independent Italian cohort. Microarray expression analysis of post-mortem frontal cortex from PD and control brains demonstrates a significant association between rs1564282 and higher α-synuclein expression, a known cause of early onset PD. Functional knockdown of GAK in cell culture causes a significant increase in toxicity when α-synuclein is over-expressed. Furthermore, knockdown of GAK in rat primary neurons expressing the A53T mutation of α-synuclein, a well-established model for PD, decreases cell viability. These observations provide evidence that GAK is associated with PD risk and suggest that GAK and α-synuclein interact in a pathway involved in PD pathogenesis. The GAK protein, a serine/threonine kinase, belongs to a family of proteins commonly targeted for drug development. This, combined with GAK's observed relationship to the levels of α-synuclein expression and toxicity, suggests that the protein is an attractive therapeutic target for the treatment of PD.Robert P. & Judith N. Goldberg FoundationWilliam N. & Bernice E. Bumpus FoundationHoward Hughes Medical Institute (Collaborative Innovation Award)National Science Foundation (U.S.) (R01-NS036711

    MicroRNAs located in the Hox gene clusters are implicated in huntington\u27s disease pathogenesis

    Get PDF
    Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington\u27s disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value \u3c 0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD

    Copy Number Variation in Familial Parkinson Disease

    Get PDF
    Copy number variants (CNVs) are known to cause Mendelian forms of Parkinson disease (PD), most notably in SNCA and PARK2. PARK2 has a recessive mode of inheritance; however, recent evidence demonstrates that a single CNV in PARK2 (but not a single missense mutation) may increase risk for PD. We recently performed a genome-wide association study for PD that excluded individuals known to have either a LRRK2 mutation or two PARK2 mutations. Data from the Illumina370Duo arrays were re-clustered using only white individuals with high quality intensity data, and CNV calls were made using two algorithms, PennCNV and QuantiSNP. After quality assessment, the final sample included 816 cases and 856 controls. Results varied between the two CNV calling algorithms for many regions, including the PARK2 locus (genome-wide p = 0.04 for PennCNV and p = 0.13 for QuantiSNP). However, there was consistent evidence with both algorithms for two novel genes, USP32 and DOCK5 (empirical, genome-wide p-values<0.001). PARK2 CNVs tended to be larger, and all instances that were molecularly tested were validated. In contrast, the CNVs in both novel loci were smaller and failed to replicate using real-time PCR, MLPA, and gel electrophoresis. The DOCK5 variation is more akin to a VNTR than a typical CNV and the association is likely caused by artifact due to DNA source. DNA for all the cases was derived from whole blood, while the DNA for all controls was derived from lymphoblast cell lines. The USP32 locus contains many SNPs with low minor allele frequency leading to a loss of heterozygosity that may have been spuriously interpreted by the CNV calling algorithms as support for a deletion. Thus, only the CNVs within the PARK2 locus could be molecularly validated and associated with PD susceptibility

    Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    Get PDF
    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms

    Behavioral Coping Phenotypes and Associated Psychosocial Outcomes of Pregnant and Postpartum Women During the COVID-19 Pandemic

    Get PDF
    The impact of COVID-19-related stress on perinatal women is of heightened public health concern given the established intergenerational impact of maternal stress-exposure on infants and fetuses. There is urgent need to characterize the coping styles associated with adverse psychosocial outcomes in perinatal women during the COVID-19 pandemic to help mitigate the potential for lasting sequelae on both mothers and infants. This study uses a data-driven approach to identify the patterns of behavioral coping strategies that associate with maternal psychosocial distress during the COVID-19 pandemic in a large multicenter sample of pregnant women (N = 2876) and postpartum women (N = 1536). Data was collected from 9 states across the United States from March to October 2020. Women reported behaviors they were engaging in to manage pandemic-related stress, symptoms of depression, anxiety and global psychological distress, as well as changes in energy levels, sleep quality and stress levels. Using latent profile analysis, we identified four behavioral phenotypes of coping strategies. Critically, phenotypes with high levels of passive coping strategies (increased screen time, social media, and intake of comfort foods) were associated with elevated symptoms of depression, anxiety, and global psychological distress, as well as worsening stress and energy levels, relative to other coping phenotypes. In contrast, phenotypes with high levels of active coping strategies (social support, and self-care) were associated with greater resiliency relative to other phenotypes. The identification of these widespread coping phenotypes reveals novel behavioral patterns associated with risk and resiliency to pandemic-related stress in perinatal women. These findings may contribute to early identification of women at risk for poor long-term outcomes and indicate malleable targets for interventions aimed at mitigating lasting sequelae on women and children during the COVID-19 pandemic

    Genomewide association study for onset age in Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.</p> <p>Methods</p> <p>Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.</p> <p>Results</p> <p>Meta-analysis across the three studies detected consistent association (p < 1 × 10<sup>-5</sup>) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10<sup>-7</sup>) lies between the genes <it>QSER1 </it>and <it>PRRG4</it>. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10<sup>-6</sup>) which lies in an intron of the <it>AAK1 </it>gene. This gene is closely related to <it>GAK</it>, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.</p> <p>Conclusion</p> <p>Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.</p
    • …
    corecore