1 research outputs found

    The Derivative Riemann Problem: The basis for high order ADER Schemes

    No full text
    The corner stone of arbitrary high order schemes (ADER schemes) is the solution of the derivative Riemann problem at the element interfaces, a generalization of the classical Riemann problem first used by Godunov in 1959 to construct a first-order upwind numerical method for hyperbolic systems. The derivative Riemann problem extends the possible initial conditions to piecewise smooth functions, separated by a discontinuity at the interface. In the finite volume framework, these piecewise smooth functions are obtained from cell averages by a high order non-oscillatory WENO reconstruction, allowing hence the construction of non-oscillatory methods with uniform high order of accuracy in space and time
    corecore