3,271 research outputs found
Extreme AO Observations of Two Triple Asteroid Systems with SPHERE
We present the discovery of a new satellite of asteroid (130) Elektra -
S/2014 (130) 1 - in differential imaging and in integral field spectroscopy
data over multiple epochs obtained with SPHERE/VLT. This new (second) moonlet
of Elektra is about 2 km across, on an eccentric orbit and about 500 km away
from the primary. For a comparative study, we also observed another triple
asteroid system (93) Minerva. For both systems, component-resolved reflectance
spectra of the satellites and primary were obtained simultaneously. No
significant spectral difference was observed between the satellites and the
primary for either triple system. We find that the moonlets in both systems are
more likely to have been created by sub-disruptive impacts as opposed to having
been captured.Comment: 8 pages, 4 figures, 1 table, accepted to be published in the
Astrophysical Journal Letter
Early Chromosome Condensation By XIST Builds A-Repeat RNA Density That Facilitates Gene Silencing
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2–4 h, barely visible transcripts populate the large “sparse zone” surrounding the smaller “dense zone”; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing
From Bloch model to the rate equations II: the case of almost degenerate energy levels
Bloch equations give a quantum description of the coupling between an atom
and a driving electric force. In this article, we address the asymptotics of
these equations for high frequency electric fields, in a weakly coupled regime.
We prove the convergence towards rate equations (i.e. linear Boltzmann
equations, describing the transitions between energy levels of the atom). We
give an explicit form for the transition rates. This has already been performed
in [BFCD03] in the case when the energy levels are fixed, and for different
classes of electric fields: quasi or almost periodic, KBM, or with continuous
spectrum. Here, we extend the study to the case when energy levels are possibly
almost degenerate. However, we need to restrict to quasiperiodic forcings. The
techniques used stem from manipulations on the density matrix and the averaging
theory for ordinary differential equations. Possibly perturbed small divisor
estimates play a key role in the analysis. In the case of a finite number of
energy levels, we also precisely analyze the initial time-layer in the rate
aquation, as well as the long-time convergence towards equilibrium. We give
hints and counterexamples in the infinite dimensional case
Deep imaging survey of young, nearby austral stars: VLT/NACO near-infrared Lyot-coronographic observations
Context. High contrast and high angular resolution imaging is the optimal search technique for substellar companions to nearby stars at physical separations larger than typically 10 AU. Two distinct populations of substellar companions, brown dwarfs and planets, can be probed and characterized. As a result, fossile traces of processes of formation and evolution can be revealed by physical and orbital properties, both for individual systems and as an ensemble.
Aims. Since November 2002, we have conducted a large, deep imaging, survey of young, nearby associations of the southern hemisphere. Our goal is detection and characterization of substellar companions with projected separations in the range 10–500 AU. We have observed a sample of 88 stars, primarily G to M dwarfs, younger than 100 Myr, and within 100 pc of Earth.
Methods. The VLT/NACO adaptive optics instrument of the ESO Paranal Observatory was used to explore the faint circumstellar environment between typically 0.1 and 10". Diffraction-limited observations in H and K_s-band combined with Lyot-coronagraphy enabled us to reach primary star-companion brightness ratios as small as 10^(-6). The existence of planetary mass companions could therefore be probed. We used a standardized observing sequence to precisely measure the position and flux of all detected sources relative to their visual primary star. Repeated observations at several epochs enabled us to discriminate comoving companions from background objects.
Results. We report the discovery of 17 new close (0.1–5.0") multiple systems. HIP 108195 AB and C (F1 III-M6), HIP 84642 AB (a~14 AU, K0-M5) and TWA22 AB (a~1.8 AU; M6-M6) are confirmed comoving systems. TWA22 AB is likely to be a rare astrometric calibrator that can be used to test evolutionary model predictions. Among our complete sample, a total of 65 targets were observed with deep coronagraphic imaging. About 240 faint companion candidates were detected around 36 stars. Follow-up observations with VLT or HST for 83% of these stars enabled us to identify a large fraction of background contaminants. Our latest results that pertain to the substellar companions to GSC 08047-00232, AB Pic and 2M1207 (confirmed during this survey and published earlier), are reviewed. Finally, a statistical analysis of our complete set of coronagraphic detection limits enables us to place constraints on the physical and orbital properties of giant planets between typically 20 and 150 AU
An experience in modelling business process architecture
We present a mapping of a previously designed Business Process
Architecture (BPA) meta-model onto ArchiMate, i.e., the de facto standard
Enterprise Architecture (EA) modelling language. This construct mapping allows
developing process maps, i.e., descriptions of (views of) the business process
architecture of an organization. We demonstrate the development of these process maps using the Signavio Business Process Management (BPM) modelling
platform. The developed process maps are part of the organization’s enterprise
architecture model and are linked to BPMN process diagrams that detail the
functional, control-flow, data and resource aspects of the business processes
included in the process map. Our research contributes to the integration of BPM
and EA by researching BPA as a concept common to both disciplines
Phase-Space Volume of Regions of Trapped Motion: Multiple Ring Components and Arcs
The phase--space volume of regions of regular or trapped motion, for bounded
or scattering systems with two degrees of freedom respectively, displays
universal properties. In particular, sudden reductions in the phase-space
volume or gaps are observed at specific values of the parameter which tunes the
dynamics; these locations are approximated by the stability resonances. The
latter are defined by a resonant condition on the stability exponents of a
central linearly stable periodic orbit. We show that, for more than two degrees
of freedom, these resonances can be excited opening up gaps, which effectively
separate and reduce the regions of trapped motion in phase space. Using the
scattering approach to narrow rings and a billiard system as example, we
demonstrate that this mechanism yields rings with two or more components. Arcs
are also obtained, specifically when an additional (mean-motion) resonance
condition is met. We obtain a complete representation of the phase-space volume
occupied by the regions of trapped motion.Comment: 19 pages, 17 figure
Heme oxygenase 1 is differentially involved in blood flow-dependent arterial remodeling: role of inflammation, oxidative stress, and nitric oxide
Heme oxygenase 1 is induced by hemodynamic forces in vascular smooth muscle and endothelial cells. We investigated the involvement of heme oxygenase 1 in flow (shear stress)-dependent remodeling. Two or 14 days after ligation of mesenteric resistance arteries, vessels were isolated. In rats, at 14 days, diameter increased by 23% in high-flow arteries and decreased by 22% in low-flow arteries compared with normal flow vessels. Heme oxygenase activity inhibition using Tin-protoporphyrin abolished diameter enlargement in high-flow arteries and accentuated arterial narrowing in low-flow arteries (32% diameter decrease versus 22% in control). Two days after ligation, heme oxygenase 1 expression increased in high-flow and low-flow vessels, in association with a reduced mitochondrial aconitase activity (marker of oxidative stress) in high-flow arteries only. Inhibition of macrophage infiltration (clodronate) decreased heme oxygenase 1 induction in low-flow but not in high-flow arteries. Similarly, inhibition of NADPH oxidase activity (apocynin) decreased heme oxygenase 1 induction in low-flow but not high-flow arteries. However, dihydroethidium staining was higher in high-flow and low-flow compared with normal flow arteries. In arteries cannulated in an arteriograph, heme oxygenase 1 mRNA increased in a flow-dependent manner and was abolished by N(G)-nitro-l-arginine methyl ester, catalase, or mitochondrial electron transport chain inhibition. Furthermore, heme oxygenase 1 induction using cobalt-protoporphyrin restored altered high-flow remodeling in endothelial NO synthase knockout mice. Thus, in high-flow remodeling, heme oxygenase 1 induction depends on shear stress-generated NO and mitochondria-derived hydrogen peroxide. In low-flow remodeling, heme oxygenase 1 induction requires macrophage infiltration and is mediated by NADPH oxidase-derived superoxide
On the flow-level stability of data networks without congestion control: the case of linear networks and upstream trees
In this paper, flow models of networks without congestion control are
considered. Users generate data transfers according to some Poisson processes
and transmit corresponding packet at a fixed rate equal to their access rate
until the entire document is received at the destination; some erasure codes
are used to make the transmission robust to packet losses. We study the
stability of the stochastic process representing the number of active flows in
two particular cases: linear networks and upstream trees. For the case of
linear networks, we notably use fluid limits and an interesting phenomenon of
"time scale separation" occurs. Bounds on the stability region of linear
networks are given. For the case of upstream trees, underlying monotonic
properties are used. Finally, the asymptotic stability of those processes is
analyzed when the access rate of the users decreases to 0. An appropriate
scaling is introduced and used to prove that the stability region of those
networks is asymptotically maximized
Avaliação da atividade celulásica e quitinásica de estirpes de Bacillus thuringiensis ativas contra Spodoptera frugiperda, Anticarsia gemmatalis e Anthonomus grandis.
bitstream/CENARGEN/29753/1/bp211.pd
- …