3 research outputs found

    Electro-driven materials and processes for lithium recovery—A review

    Get PDF
    The mass production of lithium-ion batteries and lithium-rich e-products that are required for electric vehicles, energy storage devices, and cloud-connected electronics is driving an unprecedented demand for lithium resources. Current lithium production technologies, in which extraction and purification are typically achieved by hydrometallurgical routes, possess strong environmental impact but are also energy-intensive and require extensive operational capabilities. The emergence of selective membrane materials and associated electro-processes offers an avenue to reduce these energy and cost penalties and create more sustainable lithium production approaches. In this review, lithium recovery technologies are discussed considering the origin of the lithium, which can be primary sources such as minerals and brines or e-waste sources generated from recycling of batteries and other e-products. The relevance of electro-membrane processes for selective lithium recovery is discussed as well as the potential and shortfalls of current electro-membrane methods

    Next generation membranes for membrane distillation and future prospects

    Full text link
    This chapter presents the most recent advances in membrane materials technology and module configurations for membrane distillation (MD), as well as their novel applications. The impact of the material morphology, surface energy, and pore structure on MD performance is discussed. The differences between hollow fibres and flat sheet membrane materials are also examined and promising novel structures or module configurations reviewed. In addition, novel materials and module configuration strategies are also identified that may lead to superior MD systems. Also, this chapter identifies current gaps where further work may lead to ongoing improvements to MD
    corecore