56 research outputs found

    Anti-α-glucose-based glycan IgM antibodies predict relapse activity in multiple sclerosis after the first neurological event

    Get PDF
    Background There is no specific serum-based biomarker for the diagnosis or prognosis of relapsing-remitting multiple sclerosis (RRMS). Objective We investigated whether levels of IgM antibodies to Glc(alpha 1,4) Glc(alpha) (GAGA4) or to a panel of four glucose-based glycans could differentiate MS from other neurological diseases (OND) or predict risk of early relapse following first presentation (FP) of RRMS. Methods Retrospective analysis of 440 sera samples of three cohorts: A) FP-RRMS (n = 44), OND (n = 44); B) FP-RRMS (n = 167), OND (n = 85); and C) FP (n = 100). Anti-GAGA4 IgM levels were measured by enzyme immunoassay in cohort-A and cohort-B. Cohort-C IgM antibodies to glucose-based glycan panel were measured by immunofluorescence. Results FP-RRMS had higher levels of anti-GAGA4 IgM than OND patients (cohort-A, P = 0.01; cohort-B, P = 0.0001). Sensitivity and specificity were 27% and 97% for cohort-A; and 26% and 90% for cohort-B, respectively. In cohort-C, 58 patients experienced early relapse (= 24 months), and 11 did not experience second attack during follow-up. Kaplan-Meier curves demonstrated decrease in time to next relapse for patients positive for the antibody panel (P = 0.02, log rank). Conclusions Serum anti-GAGA4 IgM discerns FP-RRMS patients from OND patients. Higher levels of serum anti-alpha-glucose IgM in FP patients predict imminent early relapse. Multiple Sclerosis 2009; 15: 422-430. http://msj.sagepub.co

    A Robust Asymptotically Based Modeling Approach for Two-Phase Flows

    No full text
    A simple semitheoretical method for calculating two-phase frictional pressure gradient in horizontal circular pipes using asymptotic analysis to develop a robust compact model is presented. Two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (Ď•l2) or two-phase frictional multiplier for gas flowing alone (Ď•g2) as a function of the Lockhart-Martinelli parameter, X. Single-phase friction factors are calculated using the Churchill model which allows for prediction over the full range of laminar-transition-turbulent regions and allows for pipe roughness effects. The proposed model is compared against published data to show the asymptotic behavior. Comparison with other existing correlations for two-phase frictional pressure gradient such as the Chisholm correlation, the Friedel correlation, and the MĂĽller-Steinhagen and Heck correlation, is also presented. Comparison with experimental data for both Ď•l and Ď•l versus X is also presented. At the end of the paper, the present asymptotic model is also extended to minichannels and microchannels
    • …
    corecore