5 research outputs found

    A Possible Land Cover EAGLE Approach to Overcome Remote Sensing Limitations in the Alps Based on Sentinel-1 and Sentinel-2: The Case of Aosta Valley (NW Italy)

    No full text
    Land cover (LC) maps are crucial to environmental modeling and define sustainable management and planning policies. The development of a land cover mapping continuous service according to the new EAGLE legend criteria has become of great interest to the public sector. In this work, a tentative approach to map land cover overcoming remote sensing (RS) limitations in the mountains according to the newest EAGLE guidelines was proposed. In order to reach this goal, the methodology has been developed in Aosta Valley, NW of Italy, due to its higher degree of geomorphological complexity. Copernicus Sentinel-1 and 2 data were adopted, exploiting the maximum potentialities and limits of both, and processed in Google Earth Engine and SNAP. Due to SAR geometrical distortions, these data were used only to refine the mapping of urban and water surfaces, while for other classes, composite and timeseries filtered and regularized stack from Sentinel-2 were used. GNSS ground truth data were adopted, with training and validation sets. Results showed that K-Nearest-Neighbor and Minimum Distance classification permit maximizing the accuracy and reducing errors. Therefore, a mixed hierarchical approach seems to be the best solution to create LC in mountain areas and strengthen local environmental modeling concerning land cover mapping

    A Scalable Earth Observation Service to Map Land Cover in Geomorphological Complex Areas beyond the Dynamic World: An Application in Aosta Valley (NW Italy)

    No full text
    Earth Observation services guarantee continuous land cover mapping and are becoming of great interest worldwide. The Google Earth Engine Dynamic World represents a planetary example. This work aims to develop a land cover mapping service in geomorphological complex areas in the Aosta Valley in NW Italy, according to the newest European EAGLE legend starting in the year 2020. Sentinel-2 data were processed in the Google Earth Engine, particularly the summer yearly median composite for each band and their standard deviation with multispectral indexes, which were used to perform a k-nearest neighbor classification. To better map some classes, a minimum distance classification involving NDVI and NDRE yearly filtered and regularized stacks were computed to map the agronomical classes. Furthermore, SAR Sentinel-1 SLC data were processed in the SNAP to map urban and water surfaces to improve optical classification. Additionally, deep learning and GIS updated datasets involving urban components were adopted beginning with an aerial orthophoto. GNSS ground truth data were used to define the training and the validation sets. In order to test the effectiveness of the implemented service and its methodology, the overall accuracy was compared to other approaches. A mixed hierarchical approach represented the best solution to effectively map geomorphological complex areas to overcome the remote sensing limitations. In conclusion, this service may help in the implementation of European and local policies concerning land cover surveys both at high spatial and temporal resolutions, empowering the technological transfer in alpine realities

    Risk Assessment of Rising Temperatures Using Landsat 4–9 LST Time Series and Meta<sup>®</sup> Population Dataset: An Application in Aosta Valley, NW Italy

    No full text
    Earth observation data have assumed a key role in environmental monitoring, as well as in risk assessment. Rising temperatures and consequently heat waves due to ongoing climate change represent an important risk considering the population, as well as animals, exposed. This study was focused on the Aosta Valley Region in NW Italy. To assess population exposure to these patterns, the following datasets have been considered: (1) HDX Meta population dataset refined and updated in order to map population distribution and its features; (2) Landsat collection (missions 4 to 9) from 1984 to 2022 obtained and calibrated in Google Earth Engine to model LST trends. A pixel-based analysis was performed considering Aosta Valley settlements and relative population distribution according to the Meta population dataset. From Landsat data, LST trends were modelled. The LST gains computed were used to produce risk exposure maps considering the population distribution and structure (such as ages, gender, etc.). To check the consistency and quality of the HDX population dataset, MAE was computed considering the ISTAT population dataset at the municipality level. Exposure-risk maps were finally realized adopting two different approaches. The first one considers only LST gain maximum by performing an ISODATA unsupervised classification clustering in which the separability of each class obtained and was checked by computing the Jeffries–Matusita (J-M) distances. The second one was to map the rising temperature exposure by developing and performing a risk geo-analysis. In this last case the input parameters considered were defined after performing a multivariate regression in which LST maximum was correlated and tested considering (a) Fractional Vegetation Cover (FVC), (b) Quote, (c) Slope, (d) Aspect, (e) Potential Incoming Solar Radiation (mean sunlight duration in the meteorological summer season), and (f) LST gain mean. Results show a steeper increase in LST maximum trend, especially in the bottom valley municipalities, and especially in new built-up areas, where more than 60% of the Aosta Valley population and domestic animals live and where a high exposure has been detected and mapped with both approaches performed. Maps produced may help the local planners and the civil protection services to face global warming from a One Health perspective
    corecore