1,751 research outputs found
Wermer examples and currents
In this paper we give the first examples of positive closed currents in
with continuous potentials, vanishing self-intersection, and
which are not laminar. More precisely, they are supported on sets "without
analytic structure". The result is mostly interesting when the potential has
regularity close to , because laminarity is expected to hold in that case.
We actually construct examples which are for all .Comment: Minor modifications. Final version, to appear in GAF
Modulational instability in dispersion-kicked optical fibers
We study, both theoretically and experimentally, modulational instability in
optical fibers that have a longitudinal evolution of their dispersion in the
form of a Dirac delta comb. By means of Floquet theory, we obtain an exact
expression for the position of the gain bands, and we provide simple analytical
estimates of the gain and of the bandwidths of those sidebands. An experimental
validation of those results has been realized in several microstructured fibers
specifically manufactured for that purpose. The dispersion landscape of those
fibers is a comb of Gaussian pulses having widths much shorter than the period,
which therefore approximate the ideal Dirac comb. Experimental spontaneous MI
spectra recorded under quasi continuous wave excitation are in good agreement
with the theory and with numerical simulations based on the generalized
nonlinear Schr\"odinger equation
Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation
We show that the nonlinear stage of modulational instability induced by
parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can
be accurately described by combining mode truncation and averaging methods,
valid in the strong driving regime. The resulting integrable oscillator reveals
a complex hidden heteroclinic structure of the instability. A remarkable
consequence, validated by the numerical integration of the original model, is
the existence of breather solutions separating different Fermi-Pasta-Ulam
recurrent regimes. Our theory also shows that optimal parametric amplification
unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues)
arising from the linearised Floquet analysis
Fotonima stimulirana desorpcija vodikovih iona iz poluvodičkih površina: dokazi izravnih i posrednih procesa
Photon-stimulated desorption of positive hydrogen ions from hydrogenated diamond and GaAs surfaces have been studied for incident photon energies around core-level binding energies of substrate atoms. In the case of diamond surfaces, the comparison between the H+ yield and the near edge X-ray absorption fine structure (NEXAFS) for electrons of selected kinetic energies reveals two different processes leading to photodesorption: an indirect process involving secondary electrons from the bulk and a direct process involving core-level excitations of surface carbon atoms bonded to hydrogen. The comparison of H+ photodesorption and electron photoemission as the function of photon energy from polar and non-polar GaAs surfaces provides clear evidence for direct desorption processes initiated by ionisation of corresponding core levels of bonding atoms.Proučavali smo fotonima stimuliranu desorpciju pozitivnih iona vodika iz hidrogeniziranih površina dijamanta i GaAs, za fotone energije oko energija vezanja unutarnjih elektrona atoma podloge. U slučaju površine dijamanta, usporedba prinosa H+ i fine strukture blizu-rubne apsorpcije X-zračenja (NEXAFS) za elektrone odabranih kinetičkih energija otkriva dva različita procesa koji uzrokuju fotodesorpciju: posredan proces uz sudjelovanje sekundarnih elektrona iz osnovnog materijala, i izravan proces uzrokovan uzbudom unutarnjih elektrona površinskih atoma ugljika vezanih na vodik. Usporedba fotodesorpcije H+ i emisije elektrona u ovisnosti o energiji fotona iz polarnih i nepolarnih površina GaAs daje jasne dokaze za izravne procese desorpcije uzrokovane ionizacijom odgovarajućih unutarnjih stanja veznih atoma
Fluorescent oxide nanoparticles adapted to active tips for near-field optics
We present a new kind of fluorescent oxide nanoparticles with properties well
suited to active-tip based near-field optics. These particles with an average
diameter in the range 5-10 nm are produced by Low Energy Cluster Beam
Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission
electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical
photoluminescence, cathodoluminescence and near-field scanning optical
microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in
size are observed. These emitters are validated as building blocks of active
NSOM tips by coating a standard optical tip with a 10 nm thick layer of
YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing
NSOM imaging of test surfaces.Comment: Changes made following Referee's comments; added references; one
added figure. See story on this article at:
http://nanotechweb.org/cws/article/tech/3606
Conversion of total shoulder arthroplasty to reverse shoulder arthroplasty made possible by custom humeral adapter
AbstractReverse shoulder arthroplasty (RSA) is increasingly being used to revise anatomical total shoulder arthroplasty cases. This procedure's high complication rate has been reduced by the availability of modular shoulder systems, which allows the humeral component to be preserved during the conversion. This case report describes the revision of an anatomical shoulder implant inserted in 1998. Polyethylene wear and the resulting metal-on-metal contact had caused metallosis. Since the existing humeral implant was not compatible with standard conversion products, the manufacturer provided a custom humeral adapter that allowed the humeral stem to be preserved. This approach greatly simplified the surgical procedure and resulted in good anatomical and clinical outcomes after 9 months of follow-up
STM topography and manipulation of single Au atoms on Si(100)
The low-temperature (12 K) adsorption of single Au atoms on Si(100) is studied by scanning tunneling microscopy (STM). Comparison between experimental and calculated STM topographies as well as density-functional-theory calculations of the adsorption energies enable us to identify two adsorption configurations of Au atoms between Si-dimer rows (BDRs) and on top of Si-dimer rows (TDRs). In both adsorption configurations, the Au atoms are covalently bound to two Si atoms through a partial electron transfer from Si to Au. STM manipulation confirms that the TDR adsorption configuration is metastable, whereas the BDR one is the most stable configuration.Peer reviewe
- …