15 research outputs found

    The relation between fibrinogen level, neutrophil activity and nucleosomes in the onset of disseminated intravascular coagulation in the critically ill.

    No full text
    BACKGROUND Nucleosomes and neutrophil extracellular traps (NETs) are important in the pathophysiology of disseminated intravascular coagulation (DIC). Fibrinogen, as an acute phase reactant, may be protective by engaging neutrophils. We hypothesize that DIC can occur when NET formation becomes uncontrolled in relation to low fibrinogen levels. PATIENTS/METHOD The ratio of both circulating nucleosomes and human neutrophil elastase alpha-1-antitrypsine complexes (HNE-a1ATc) to fibrinogen was correlated to thrombocytopenia, DIC and organ failure in 64 critically ill coagulopathic patients. RESULTS A high nucleosome to fibrinogen ratio correlated with thrombocytopenia and organ failure (ρ - 0.391, p 0.01 and ρ 0.556, p 0.01, respectively). A high HNE-a1ATc to fibrinogen ratio correlated with thrombocytopenia, DIC and organ failure (ρ -0.418, p 0.01, ρ 0.391, p 0.01 and ρ 0.477, p 0.01 respectively). CONCLUSION These findings support the hypothesis that fibrinogen is protective against DIC by counterbalancing excessive neutrophil activation. This article is protected by copyright. All rights reserved

    Rotational thromboelastometry in critically ill COVID-19 patients does not predict thrombosis

    No full text
    Background: Critically ill COVID-19 patients are in a hypercoagulable state with increased risk of thrombotic complications. Rotational thromboelastometry (ROTEM) is a viscoelastic test with the potential to reflect COVID-19-associated hypercoagulability and may therefore be useful to predict thrombotic complications. Objective: To investigate the potential of ROTEM profiles to predict thrombotic complications in critically ill COVID-19 patients. Patients/Methods: Retrospective multicenter cohort study in 113 adult patients with confirmed COVID-19 infection admitted to the intensive care unit (ICU) of two large teaching hospitals in the United States and in the Netherlands. ROTEM profiles of the EXTEM, INTEM, and FIBTEM tracings were measured within 72 h of ICU admission. Thrombotic complications encompass both arterial and venous thromboembolic complications, diagnosed with electrocardiogram, ultrasound, or computed tomography. ROTEM profiles were compared between patients with and without thrombosis. Univariable logistic regression followed by receiver operating characteristic (ROC) curves analysis was performed to identify ROTEM parameters associated with thrombosis. Results and Conclusions: Of 113 patients, 27 (23.9%) developed a thrombotic event. In the univariable analysis, EXTEM clot amplitude at 10 min (CA10) and EXTEM maximum clot formation (MCF) were associated with thrombosis with a p < 0.2 (p = 0.07 and p = 0.05, respectively). In ROC curve analysis, EXTEM CA10 had an area under the curve (AUC) of 0.58 (95% CI 0.47–0.70) and EXTEM MCF had an AUC of 0.60 (95% CI 0.49–0.71). Thereby, ROTEM profiles at ICU admission did not have the potential to differentiate between patients with a high and low risk for thrombotic complications

    The relation between fibrinogen level, neutrophil activity and nucleosomes in the onset of disseminated intravascular coagulation in the critically ill

    No full text
    Background: Nucleosomes and neutrophil extracellular traps (NETs) are important in the pathophysiology of disseminated intravascular coagulation (DIC). Fibrinogen, as an acute phase reactant, may be protective by engaging neutrophils. We hypothesize that DIC can occur when NET formation becomes uncontrolled in relation to low fibrinogen levels. Patients/method: The ratio of both circulating nucleosomes and human neutrophil elastase alpha-1-antitrypsine complexes (HNE-a1ATc) to fibrinogen was correlated to thrombocytopenia, DIC and organ failure in 64 critically ill coagulopathic patients. Results: A high nucleosome to fibrinogen ratio correlated with thrombocytopenia and organ failure (ρ −0.391, p 0.01 and ρ 0.556, p 0.01, respectively). A high HNE-a1ATc to fibrinogen ratio correlated with thrombocytopenia, DIC and organ failure (ρ −0.418, p 0.01, ρ 0.391, p 0.01 and ρ 0.477, p 0.01 respectively). Conclusion: These findings support the hypothesis that fibrinogen is protective against DIC by counterbalancing excessive neutrophil activation

    Biomarkers for the prediction of venous thromboembolism in critically ill COVID-19 patients

    No full text
    Background: Venous thromboembolism (VTE) is a frequent complication in critically ill patients with coronavirus disease 2019 (COVID-19) and is associated with mortality. Early diagnosis and treatment of VTE is warranted. Objective: To develop a prediction model for VTE in critically ill COVID-19 patients. Patients and methods: In this retrospective cohort study, 127 adult patients with confirmed COVID-19 infection admitted to the intensive care unit of two teaching hospitals were included. VTE was diagnosed with either ultrasound or computed tomography scan. Univariate receiver operating characteristic (ROC) curves were constructed for Positive End Expiratory Pressure, PaO2/FiO2 ratio, platelet count, international normalized ratio, activated partial thromboplastin time as well as levels of fibrinogen, antithrombin, D-dimer and C-reactive protein (CRP). Multivariate analysis was done using binary linear regression. Results: Variables associated with VTE in both univariate and multivariate analysis were D-dimer and CRP with an area under the curve (AUC) of 0.64, P = 0.023 and 0.75, P = 0.045, respectively. Variables indicating hypoxemia were not predictive. The ROC curve of D-dimer and CRP combined had an AUC of 0.83, P 15 in combination with a CRP > 280 was 98%. The negative predictive value of D-dimer was low. Conclusion: Elevated CRP and D-dimer have a high positive predictive value for VTE in critically ill COVID-19 patients. We developed a prediction table with these biomarkers that can aid clinicians in the timing of imaging in patients with suspected VTE

    Shock-Driven Endotheliopathy in Trauma Patients Is Associated with Leucocyte Derived Extracellular Vesicles

    No full text
    Endotheliopathy following trauma is associated with poor outcome, but the underlying mechanisms are unknown. This study hypothesized that an increased extracellular vesicle (EV) concentration is associated with endotheliopathy after trauma and that red blood cell (RBC) transfusion could further enhance endotheliopathy. In this post hoc sub study of a multicentre observational trial, 75 trauma patients were stratified into three groups based on injury severity score or shock. In patient plasma obtained at hospital admission and after transfusion of four RBC transfusions, markers for endotheliopathy were measured and EVs were labelled with anti CD41 (platelet EVs), anti CD235a (red blood cell EVs), anti CD45 (leucocyte EVs), anti CD144 (endothelial EVs) or anti CD62e (activated endothelial EVs) and EV concentrations were measured with flow cytometry. Statistical analysis was performed by a Kruskall Wallis test with Bonferroni correction or Wilcoxon rank test for paired data. In patients with shock, syndecan-1 and von Willebrand Factor (vWF) were increased compared to patients without shock. Additionally, patients with shock had increased red blood cell EV and leucocyte EV concentrations compared to patients without shock. Endotheliopathy markers correlated with leucocyte EVs (ρ = 0.263, p = 0.023), but not with EVs derived from other cells. Injury severity score had no relation with EV release. RBC transfusion increased circulating red blood cell EVs but did not impact endotheliopathy. In conclusion, shock is (weakly) associated with EVs from leucocytes, suggesting an immune driven pathway mediated (at least in part) by shock

    Indoleamine 2,3-dioxygenase (IDO)-1 and IDO-2 activity and severe course of COVID-19

    No full text
    COVID-19 is a pandemic with high morbidity and mortality. In an autopsy cohort of COVID-19 patients, we found extensive accumulation of the tryptophan degradation products 3-hydroxy-anthranilic acid and quinolinic acid in the lungs, heart, and brain. This was not related to the expression of the tryptophan-catabolizing indoleamine 2,3-dioxygenase (IDO)-1, but rather to that of its isoform IDO-2, which otherwise is expressed rarely. Bioavailability of tryptophan is an absolute requirement for proper cell functioning and synthesis of hormones, whereas its degradation products can cause cell death. Markers of apoptosis and severe cellular stress were associated with IDO-2 expression in large areas of lung and heart tissue, whereas affected areas in brain were more restricted. Analyses of tissue, cerebrospinal fluid, and sequential plasma samples indicate early initiation of the kynurenine/aryl-hydrocarbon receptor/IDO-2 axis as a positive feedback loop, potentially leading to severe COVID-19 pathology

    Anti-C5a antibody vilobelimab treatment and the effect on biomarkers of inflammation and coagulation in patients with severe COVID-19: a substudy of the phase 2 PANAMO trial

    No full text
    We recently reported in the phase 3 PANAMO trial that selectively blocking complement 5a (C5a) with vilobelimab led to improved survival in critically ill COVID-19 patients. C5a is an important contributor to the innate immune system and can also activate the coagulation system. High C5a levels have been reported in severely ill COVID-19 patients and correlate with disease severity and mortality. Previously, we assessed the potential benefit and safety of vilobelimab in severe COVID-19 patients. In the current substudy of the phase 2 PANAMO trial, we aim to explore the effects of vilobelimab on various biomarkers of inflammation and coagulation. Between March 31 and April 24, 2020, 17 patients with severe COVID-19 pneumonia were enrolled in an exploratory, open-label, randomised phase 2 trial. Blood markers of complement, endothelial activation, epithelial barrier disruption, inflammation, neutrophil activation, neutrophil extracellular trap (NET) formation and coagulopathy were measured using enzyme-linked immunosorbent assay (ELISA) or utilizing the Luminex platform. During the first 15 days after inclusion, change in biomarker concentrations between the two groups were modelled with linear mixed-effects models with spatial splines and compared. Eight patients were randomized to vilobelimab treatment plus best supportive care (BSC) and nine patients were randomized to BSC only. A significant decrease over time was seen in the vilobelimab plus BSC group for C5a compared to the BSC only group (p < 0.001). ADAMTS13 levels decreased over time in the BSC only group compared to the vilobelimab plus BSC group (p < 0.01) and interleukin-8 (IL-8) levels were statistically more suppressed in the vilobelimab plus BSC group compared to the BSC group (p = 0.03). Our preliminary results show that C5a inhibition decreases the inflammatory response and hypercoagulability, which likely explains the beneficial effect of vilobelimab in severe COVID-19 patients. Validation of these results in a larger sample size is warranted

    Neurofilament light increases over time in severe COVID-19 and is associated with delirium

    No full text
    Neurological monitoring in sedated Intensive Care Unit patients is constrained by the lack of reliable blood-based biomarkers. Neurofilament light is a cross-disease biomarker for neuronal damage with potential clinical applicability for monitoring Intensive Care Unit patients. We studied the trajectory of neurofilament light over a month in Intensive Care Unit patients diagnosed with severe COVID-19 and explored its relation to clinical outcomes and pathophysiological predictors. Data were collected over a month in 31 Intensive Care Unit patients (166 plasma samples) diagnosed with severe COVID-19 at Amsterdam University Medical Centre, and in the first week after emergency department admission in 297 patients with COVID-19 (635 plasma samples) admitted to Massachusetts General hospital. We observed that Neurofilament light increased in a non-linear fashion in the first month of Intensive Care Unit admission and increases faster in the first week of Intensive Care Unit admission when compared with mild-moderate COVID-19 cases. We observed that baseline Neurofilament light did not predict mortality when corrected for age and renal function. Peak neurofilament light levels were associated with a longer duration of delirium after extubation in Intensive Care Unit patients. Disease severity, as measured by the sequential organ failure score, was associated to higher neurofilament light values, and tumour necrosis factor alpha levels at baseline were associated with higher levels of neurofilament light at baseline and a faster increase during admission. These data illustrate the dynamics of Neurofilament light in a critical care setting and show associations to delirium, disease severity and markers for inflammation. Our study contributes to determine the clinical utility and interpretation of neurofilament light levels in Intensive Care Unit patients
    corecore