605 research outputs found
New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3)
We consider hypo-elliptic diffusion and convection-diffusion on , the quotient of the Lie group of rigid body motions SE(3) in
which group elements are equivalent if they are equal up to a rotation around
the reference axis. We show that we can derive expressions for the convolution
kernels in terms of eigenfunctions of the PDE, by extending the approach for
the SE(2) case. This goes via application of the Fourier transform of the PDE
in the spatial variables, yielding a second order differential operator. We
show that the eigenfunctions of this operator can be expressed as (generalized)
spheroidal wave functions. The same exact formulas are derived via the Fourier
transform on SE(3). We solve both the evolution itself, as well as the
time-integrated process that corresponds to the resolvent operator.
Furthermore, we have extended a standard numerical procedure from SE(2) to
SE(3) for the computation of the solution kernels that is directly related to
the exact solutions. Finally, we provide a novel analytic approximation of the
kernels that we briefly compare to the exact kernels.Comment: Revised and restructure
A vector equilibrium problem for the two-matrix model in the quartic/quadratic case
We consider the two sequences of biorthogonal polynomials (p_{k,n})_k and
(q_{k,n})_k related to the Hermitian two-matrix model with potentials V(x) =
x^2/2 and W(y) = y^4/4 + ty^2. From an asymptotic analysis of the coefficients
in the recurrence relation satisfied by these polynomials, we obtain the
limiting distribution of the zeros of the polynomials p_{n,n} as n tends to
infinity. The limiting zero distribution is characterized as the first measure
of the minimizer in a vector equilibrium problem involving three measures which
for the case t=0 reduces to the vector equilibrium problem that was given
recently by two of us. A novel feature is that for t < 0 an external field is
active on the third measure which introduces a new type of critical behavior
for a certain negative value of t. We also prove a general result about the
interlacing of zeros of biorthogonal polynomials.Comment: 60 pages, 9 figure
Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging
Locally adaptive differential frames (gauge frames) are a well-known
effective tool in image analysis, used in differential invariants and
PDE-flows. However, at complex structures such as crossings or junctions, these
frames are not well-defined. Therefore, we generalize the notion of gauge
frames on images to gauge frames on data representations defined on the extended space of positions and
orientations, which we relate to data on the roto-translation group ,
. This allows to define multiple frames per position, one per
orientation. We compute these frames via exponential curve fits in the extended
data representations in . These curve fits minimize first or second
order variational problems which are solved by spectral decomposition of,
respectively, a structure tensor or Hessian of data on . We include
these gauge frames in differential invariants and crossing preserving PDE-flows
acting on extended data representation and we show their advantage compared
to the standard left-invariant frame on . Applications include
crossing-preserving filtering and improved segmentations of the vascular tree
in retinal images, and new 3D extensions of coherence-enhancing diffusion via
invertible orientation scores
Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging
Left-invariant PDE-evolutions on the roto-translation group (and
their resolvent equations) have been widely studied in the fields of cortical
modeling and image analysis. They include hypo-elliptic diffusion (for contour
enhancement) proposed by Citti & Sarti, and Petitot, and they include the
direction process (for contour completion) proposed by Mumford. This paper
presents a thorough study and comparison of the many numerical approaches,
which, remarkably, is missing in the literature. Existing numerical approaches
can be classified into 3 categories: Finite difference methods, Fourier based
methods (equivalent to -Fourier methods), and stochastic methods (Monte
Carlo simulations). There are also 3 types of exact solutions to the
PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in
previous works by Duits and van Almsick in 2005. Here we provide an overview of
these 3 types of exact solutions and explain how they relate to each of the 3
numerical approaches. We compute relative errors of all numerical approaches to
the exact solutions, and the Fourier based methods show us the best performance
with smallest relative errors. We also provide an improvement of Mathematica
algorithms for evaluating Mathieu-functions, crucial in implementations of the
exact solutions. Furthermore, we include an asymptotical analysis of the
singularities within the kernels and we propose a probabilistic extension of
underlying stochastic processes that overcomes the singular behavior in the
origin of time-integrated kernels. Finally, we show retinal imaging
applications of combining left-invariant PDE-evolutions with invertible
orientation scores.Comment: A final and corrected version of the manuscript is Published in
Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9),
p.1-50, 201
Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution
We propose two strategies to improve the quality of tractography results
computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both
methods are based on the same PDE framework, defined in the coupled space of
positions and orientations, associated with a stochastic process describing the
enhancement of elongated structures while preserving crossing structures. In
the first method we use the enhancement PDE for contextual regularization of a
fiber orientation distribution (FOD) that is obtained on individual voxels from
high angular resolution diffusion imaging (HARDI) data via constrained
spherical deconvolution (CSD). Thereby we improve the FOD as input for
subsequent tractography. Secondly, we introduce the fiber to bundle coherence
(FBC), a measure for quantification of fiber alignment. The FBC is computed
from a tractography result using the same PDE framework and provides a
criterion for removing the spurious fibers. We validate the proposed
combination of CSD and enhancement on phantom data and on human data, acquired
with different scanning protocols. On the phantom data we find that PDE
enhancements improve both local metrics and global metrics of tractography
results, compared to CSD without enhancements. On the human data we show that
the enhancements allow for a better reconstruction of crossing fiber bundles
and they reduce the variability of the tractography output with respect to the
acquisition parameters. Finally, we show that both the enhancement of the FODs
and the use of the FBC measure on the tractography improve the stability with
respect to different stochastic realizations of probabilistic tractography.
This is shown in a clinical application: the reconstruction of the optic
radiation for epilepsy surgery planning
- …