18 research outputs found
Ccaat/enhancer-binding protein delta (C/ebpδ): A previously unrecognized tumor suppressor that limits the oncogenic potential of pancreatic ductal adenocarcinoma cells
CCAAT/enhancer-binding protein δ (C/EBPδ) is a transcription factor involved in growth arrest and differentiation, which has consequently been suggested to harbor tumor suppressive activities. However, C/EBPδ over-expression correlates with poor prognosis in glioblastoma and promotes genomic instability in cervical cancer, hinting at an oncogenic role of C/EBPδ in these contexts. Here, we explore the role of C/EBPδ in pancreatic cancer. We determined C/EBPδ expression in biopsies from pancreatic cancer patients using public gene-expression datasets and in-house tissue microarrays. We found that C/EBPδ is highly expressed in healthy pancreatic ductal cells but lost in pancreatic ductal adenocarcinoma. Furthermore, loss of C/EBPδ correlated with increased lymph node involvement and shorter overall survival in pancreatic ductal adenocarcinoma patients. In accordance with this, in vitro experiments showed reduced clonogenic capacity and proliferation of pancreatic ductal adenocarcinoma cells following C/EBPδ re-expression, concurrent with decreased sphere formation capacity in soft agar assays. We thus report a previously unrecognized but important tumor suppressor role of C/EBPδ in pancreatic ductal adenocarcinoma. This is of particular interest since only few tumor suppressors have been identified in the context of pancreatic cancer. Moreover, our findings suggest that restoration of C/EBPδ activity could hold therapeutic value in pancreatic ductal adenocarcinoma, although the latter claim needs to be substantiated in future studies
CCAAT/enhancer-binding protein δ: multifaceted regulator in respiratory disease
This Correspondence relates to the recently published article by Yan et al (Am J Pathol, 2012:420-430) that demonstrated that CCAAT/enhancer-binding protein δ (C/EBPδ) drives cytokine production, neutrophil accumulation, and lung vascular leakage in a murine model of lipopolysaccharide (LPS)-induced acute lung injur
Protease activated receptor-1 deficiency diminishes bleomycin-induced skin fibrosis
Accumulating evidence shows that protease-activated receptor-1 (PAR-1) plays an important role in the development of fibrosis, including lung fibrosis. However, whether PAR-1 also plays a role in the development of skin fibrosis remains elusive. The aim of this study was to determine the role of PAR-1 in the development of skin fibrosis. To explore possible mechanisms by which PAR-1 could play a role, human dermal fibroblasts and keratinocytes were stimulated with specific PAR-1 agonists or antagonists. To investigate the role of PAR-1 in skin fibrosis, we subjected wild-type and PAR-1-deficient mice to a model of bleomycin-induced skin fibrosis. PAR-1 activation leads to increased proliferation and extra cellular matrix (ECM) production, but not migration of human dermal fibroblasts (HDF) in vitro. Moreover, transforming growth factor (TGF)-â production was increased in keratinocytes upon PAR-1 activation, but not in HDF. The loss of PAR-1 in vivo significantly attenuated bleomycin-induced skin fibrosis. The bleomycin-induced increase in dermal thickness and ECM production was reduced significantly in PAR-1-deficient mice compared with wild-type mice. Moreover, TGF-β expression and the number of proliferating fibroblasts were reduced in PAR-1-deficient mice although the difference did not reach statistical significance. This study demonstrates that PAR-1 contributes to the development of skin fibrosis and we suggest that PAR-1 potentiates the fibrotic response mainly by inducing fibroblast proliferation and ECM production
Novel tracers for molecular imaging of interstitial lung disease: A state of the art review
Interstitial lung disease is an overarching term for a wide range of disorders characterized by inflammation and/or fibrosis in the lungs. Most prevalent forms, among others, include idiopathic pulmonary fibrosis (IPF) and connective tissue disease associated interstitial lung disease (CTD-ILD). Currently, only disease modifying treatment options are available for IPF and progressive fibrotic CTD-ILD, leading to reduction or stabilization in the rate of lung function decline at best. Management of these patients would greatly advance if we identify new strategies to improve (1) early detection of ILD, (2) predicting ILD progression, [3] predicting response to therapy and [4] understanding pathophysiology. Over the last years, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have emerged as promising molecular imaging techniques to improve ILD management. Both are non-invasive diagnostic tools to assess molecular characteristics of an individual patient with the potential to apply personalized treatment. In this review, we encompass the currently available pre-clinical and clinical studies on molecular imaging with PET and SPECT in IPF and CTD-ILD. We provide recommendations for potential future clinical applications of these tracers and directions for future research
Bronchoscopic Intrapulmonary Recombinant Factor VIIa for Diffuse Alveolar Hemorrhage-induced Acute Respiratory Failure in MPO-ANCA Vasculitis: A Case Report
INTRODUCTION: Diffuse alveolar haemorrhage (DAH) is a potentially life-threatening disease, characterized by diffuse accumulation of red blood cells within the alveoli. It can be caused by a variety of disorders. In case DAH results in severe respiratory failure, veno-venous extracorporeal membrane oxygenation (VV-ECMO) can be required. Since VV-ECMO coincides with the need for anticoagulation therapy, this results in a major clinical challenge in DAH patients with hemoptysis. CASE PRESENTATION: We report a patient case with severe DAH-induced acute respiratory failure and hemoptysis in need for VV-ECMO complicated by life-threatening membrane oxygenator thrombosis. The DAH-induced hemoptysis was successfully treated with local bronchoscopic recombinant factor VIIa (rFVIIa), allowing systemic anticoagulation to prevent further membrane oxygenator thrombosis. Neither systemic clinical side effects nor differences in the serum coagulation markers occurred after applying recombinant factor VIIa (rFVIIa) treatment endobronchially. CONCLUSION: This is, to our knowledge, the first case that reports the use of rFVIIa in a patient with DAH due to vasculitis and in need for VV-ECMO complicated by membrane oxygenator thrombosis
Immunomodulation and endothelial barrier protection mediate the association between oral imatinib and mortality in hospitalised COVID-19 patients
INTRODUCTION: Imatinib reduced 90-day mortality in hospitalised COVID-19 patients in a recent clinical trial, but the biological effects that cause improved clinical outcomes are unknown. We aimed to determine the biological changes elicited by imatinib in patients with COVID-19, and what baseline biological profile moderates the effect of imatinib. METHODS: Secondary analysis of a randomised, double-blind, placebo-controlled trial of oral imatinib in hospitalised, hypoxemic COVID-19 patients. Mediating effects of changes in plasma concentration of 25 plasma host response biomarkers on the association between randomisation group and 90-day mortality were studied by combining linear mixed-effect modelling and joint modelling. Moderation of baseline biomarker concentrations was evaluated by Cox regression modelling. We identified subphenotypes using Ward's method clustering and evaluated moderation of these subphenotypes using the above-described method. RESULTS: 332 out of 385 participants had plasma samples available. Imatinib increased the concentration of surfactant protein D (SP-D), and decreased the concentration of interleukin-6, procalcitonin, angiopoietin 2 to 1 ratio, E-selectin, tumour necrosis factor (TNF)α, and TNF receptor I. The effect of imatinib on 90-day mortality was fully mediated by changes in these biomarkers.Cluster analysis revealed three host response subphenotypes. Mortality benefit of imatinib was only present in the subphenotype characterised by alveolar epithelial injury indicated by increased SP-D levels in the context of systemic inflammation and endothelial dysfunction (HR 0.29, 95%-CI: 0.10-0.92). CONCLUSIONS: The effect of imatinib on mortality in hospitalised COVID-19 patients is mediated through modulation of innate immune responses and reversal of endothelial dysfunction, and possibly moderated by biological subphenotypes
Immunomodulation and endothelial barrier protection mediate the association between oral imatinib and mortality in hospitalised COVID-19 patients
Background Imatinib reduced 90-day mortality in hospitalised coronavirus disease 2019 (COVID-19) patients in a recent clinical trial, but the biological effects that cause improved clinical outcomes are unknown. We aimed to determine the biological changes elicited by imatinib in patients with COVID-19 and what baseline biological profile moderates the effect of imatinib. Methods We undertook a secondary analysis of a randomised, double-blind, placebo-controlled trial of oral imatinib in hospitalised, hypoxaemic COVID-19 patients. Mediating effects of changes in plasma concentration of 25 plasma host response biomarkers on the association between randomisation group and 90-day mortality were studied by combining linear mixed effect modelling and joint modelling. Moderation of baseline biomarker concentrations was evaluated by Cox regression modelling. We identified subphenotypes using Ward's method clustering and evaluated moderation of these subphenotypes using the aforementioned method. Results 332 out of 385 participants had plasma samples available. Imatinib increased the concentration of surfactant protein D (SP-D), and decreased the concentration of interleukin-6, procalcitonin, angiopoietin (Ang)-2/Ang-1 ratio, E-selectin, tumour necrosis factor (TNF)-α, and TNF receptor I. The effect of imatinib on 90-day mortality was fully mediated by changes in these biomarkers. Cluster analysis revealed three host response subphenotypes. Mortality benefit of imatinib was only present in the subphenotype characterised by alveolar epithelial injury indicated by increased SP-D levels in the context of systemic inflammation and endothelial dysfunction (hazard ratio 0.30, 95% CI 0.10-0.92). Conclusions The effect of imatinib on mortality in hospitalised COVID-19 patients is mediated through modulation of innate immune responses and reversal of endothelial dysfunction, and possibly moderated by biological subphenotypes
Action and clinical significance of CCAAT/enhancer-binding protein delta in hepatocellular carcinoma
CCAAT/enhancer-binding protein delta (CEBPD) is associated with the regulation of apoptosis and cell proliferation and is a candidate tumor suppressor gene. Here, we investigated its role in hepatocellular carcinoma (HCC). We observe that CEBPD mRNA expression is significantly downregulated in HCC tumors as compared with adjacent tissues. Protein levels of CEBPD are also lower in tumors relative to adjacent tissues. Reduced expression of CEBPD in the tumor correlates with worse clinical outcome. In both Huh7 and HepG2 cells, shRNA-mediated CEBPD knockdown significantly reduces cell proliferation, single cell colony formation and arrests cells in the G0/G1 phase. Subcutaneous xenografting of Huh7 in nude mice show that CEBPD knockdown results in smaller tumors. Gene expression analysis shows that CEBPD modulates interleukin-1 signaling. We conclude that CEBPD expression uncouples cancer compartment expansion and clinical outcome in HCC, potentially by modulating interleukin-1 signaling. Thus, although our results support the notion that CEBPD acts as a tumor suppressor in HCC, its action does not involve impairing compartment expansion per se but more likely acts through improving anticancer immunity
Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis
Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that remains refractory to current therapies