24 research outputs found
Tенденції формування архітектури екологічних лікувально-оздоровчих комплексів
The trends of shaping architecture of environmental rehabilitation complexes associated with environmental design principles and specific requirements of this type of building structures were consideredРассмотрены тенденции формирования архитектуры экологических лечебно-оздоровительных комплексов, связанные с использованием экологических принципов проектирования и специфическими требованиями строительства данного вида сооруженийРозглянуто тенденції формування архітектури екологічних лікувально-оздоровчих комплексів, які пов’язані з використанням екологічних принципів проектування і специфічними вимогами будівництва даного виду спору
Susy QCD and High Energy Cosmic Rays 1. Fragmentation functions of Susy QCD
The supersymmetric evolution of the fragmentation functions (or timelike
evolution) within N=1 is discussed and predictions for the fragmentation
functions of the theory (into final protons) are given. We use a backward
running of the supersymmetric DGLAP equations, using a method developed in
previous works. We start from the usual QCD parameterizations at low energy and
run the DGLAP back, up to an intermediate scale -assumed to be supersymmetric-
where we switch-on supersymmetry. From there on we assume the applicability of
an N=1 supersymmetric evolution (ESAP). We elaborate on possible application of
these results to High Energy Cosmic Rays near the GZK cutoff.Comment: 36 pages, 12 fig
Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors
Transforming growth factor beta (TGFbeta), the most established promoter of myofibroblast differentiation, induces ED-A cellular fibronectin and alpha-smooth muscle actin expression in fibroblastic cells in vivo and in vitro. ED-A fibronectin exerts a permissive action for alpha-smooth muscle actin expression. A morphological continuity (called fibronexus), a specialized form of focal adhesion, has been described between actin stress fibers that contain alpha-smooth muscle actin, and extracellular fibronectin, which contains the ED-A portion, in both cultured fibroblasts and granulation tissue myofibroblasts. We have studied the development of these focal adhesions in TGFbeta-treated fibroblasts using confocal laser scanning microscopy, three-dimensional image reconstruction and western blots using antibodies against focal adhesion proteins. The increase in ED-A fibronectin expression induced by TGFbeta was accompanied by bundling of ED-A fibronectin fibers and their association with the terminal portion of alpha-smooth muscle actin-positive stress fibers. In parallel, the focal adhesion size was importantly increased, and tensin and FAK were neoexpressed in focal adhesions; moreover, vinculin and paxillin were recruited from the cytoplasmic pool into focal adhesions. We have evaluated morphometrically the length and area of focal adhesions. In addition, we have evaluated biochemically their content of associated proteins and of alpha-smooth muscle actin after TGFbeta stimulation and on this basis suggest a new focal adhesion classification, that is, immature, mature and supermature. When TGFbeta-induced alpha-smooth muscle actin expression was blocked by soluble recombinant ED-A fibronectin, we observed that the fragment was localised into the fibronectin network at the level of focal adhesions and that focal adhesion supermaturation was inhibited. The same effect was also exerted by the ED-A fibronectin antibody IST-9. In addition, the antagonists of actin-myosin contractility BDM and ML-7 provoked the dispersion of focal adhesions and the decrease of alpha-smooth muscle actin content in stress fibers of pulmonary fibroblasts, which constitutively show large focal adhesions and numerous stress fibers that contain alpha-smooth muscle actin. These inhibitors also decreased the incorporation of recombinant ED-A into fibronectin network. Our data indicate that a three-dimensional transcellular structure containing both ED-A fibronectin and alpha-smooth muscle actin plays an important role in the establishment and modulation of the myofibroblastic phenotype. The organisation of this structure is regulated by intracellularly and extracellularly originated forces
The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers
We have previously shown that the N-terminal sequence AcEEED of alpha-smooth-muscle actin causes the loss of alpha-smooth-muscle actin from stress fibers and a decrease in cell contractility when introduced in myofibroblasts as a cell-penetrating fusion peptide. Here, we have investigated the function of this sequence on stress fiber organization in living cells, using enhanced green fluorescent protein (EGFP)-tagged alpha-smooth-muscle actin. The fusion peptide provokes the gradual disappearance of EGFP fluorescence of alpha-smooth-muscle actin from stress fibers and the formation of hitherto unknown rod-like structures. In addition to alpha-smooth-muscle actin, these structures contain cytoplasmic actins, gelsolin and cofilin but not other major actin-binding proteins. These rod-like structures are also visible in wild-type fibroblasts during normal cell spreading, suggesting that they represent a physiological step in the organization of alpha-smooth-muscle actin in stress fibers. Fluorescence-recovery-after-photobleaching experiments suggest that the fusion peptide reduces the dynamics of alpha-smooth-muscle actin and its incorporation in stress fibers. Here, we propose a new mechanism of how alpha-smooth-muscle actin is incorporated in stress fibers involving the sequence Ac-EEED
Beta and gamma-cytoplasmic actins display distinct distribution and functional diversity
Using newly generated monoclonal antibodies, we have compared the distribution of beta- and gamma-cytoplasmic actin in fibroblastic and epithelial cells, in which they play crucial roles during various key cellular processes. Whereas beta-actin is preferentially localized in stress fibers, circular bundles and at cell-cell contacts, suggesting a role in cell attachment and contraction, gamma-actin displays a more versatile organization, according to cell activities. In moving cells, gamma-actin is mainly organized as a meshwork in cortical and lamellipodial structures, suggesting a role in cell motility; in stationary cells, gamma-actin is also recruited into stress fibers. beta-actin-depleted cells become highly spread, display broad protrusions and reduce their stress-fiber content; by contrast, gamma-actin-depleted cells acquire a contractile phenotype with thick actin bundles and shrinked lamellar and lamellipodial structures. Moreover, beta- and gamma-actin depleted fibroblasts exhibit distinct changes in motility compared with their controls, suggesting a specific role for each isoform in cell locomotion. Our results reveal new aspects of beta- and gamma-actin organization that support their functional diversity
Rat fibroblasts cultured from various organs exhibit differences in alpha-smooth muscle actin expression, cytoskeletal pattern, and adhesive structure organization
In vivo, alpha-smooth muscle actin (SMA) is expressed de novo and temporarily by fibroblastic cells during wound healing and correlates particularly with wound contraction. In culture, the presence of varying proportions of cells expressing and not expressing this actin isoform (alpha-SMA-positive and alpha-SMA-negative cells) is characteristic of fibroblastic populations from different tissues. It is possible that mechanisms controlling the expression of actin isoforms, and thus modulating cytoskeleton-related functions, play a major role in the organization of cell shape and motility. We have compared the cell shape as well as the cytoskeleton and focal contact organization in alpha-SMA-positive and alpha-SMA-negative rat fibroblasts from various organs (i.e., skeletal muscle, dermis, subcutaneous tissue, and lung). Within each category, i.e., alpha-SMA-positive or alpha-SMA-negative fibroblasts, no significant morphological differences were seen among populations derived from different tissues. In contrast, alpha-SMA-positive and alpha-SMA-negative fibroblasts were significantly different, independently of their origin: alpha-SMA-positive cells had larger average areas, higher numbers of narrow extensions at the edges, larger focal adhesions with the substratum, and a more important network of cellular fibronectin than alpha-SMA-negative cells. Thus, alpha-SMA-positive and alpha-SMA-negative variants naturally present in fibroblastic populations exhibit important phenotypic differences probably associated with distinct functional activities
Smooth muscle actin isoforms: a tug of war between contraction and compliance
In higher vertebrates, smooth muscle (SM) contains two tissue-specific actin isoforms: α-SMA and γ-SMA, which predominate in vascular and visceral SM, respectively. Whether α-SMA has been extensively studied and recognized for its contractile activity in SM and SM-like cells such as myofibroblasts, myoepithelial and myoid cells, the distribution and role of γ-SMA remained largely unknown. We developed a new specific monoclonal antibody against γ-SMA and confirmed that γ-SMA predominates in the visceral system and is minor in the vascular system, although more expressed in highly compliant veins than in stiff arteries. Contrary to α-SMA, γ-SMA is absent from myofibroblasts in vitro, and in fibrotic diseases in vivo. We raised the hypothesis that, whereas α-SMA is responsible for the "contractile" activity, γ-SMA would be involved in the "compliance" of SM and SM-like cells. Several models support this hypothesis, namely veins vs. arteries and the physiological modifications occurring in the uterus and mammary glands during pregnancy and lactation. Our results suggest that, in addition to enteric smooth muscles, γ-SMA is expressed in all the tissues submitted to an important dilation including veins, gravid uterus, and lactating mammary glands. The hypothesis of two complementary mechanical roles for the two SMA isoforms is sustained by their different intracellular distributions and by functional assays
Impaired Expression of Cytoplasmic Actins Leads to Chromosomal Instability of MDA-MB-231 Basal-Like Mammary Gland Cancer Cell Line
We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy