57 research outputs found
On the Hardness of Signaling
There has been a recent surge of interest in the role of information in
strategic interactions. Much of this work seeks to understand how the realized
equilibrium of a game is influenced by uncertainty in the environment and the
information available to players in the game. Lurking beneath this literature
is a fundamental, yet largely unexplored, algorithmic question: how should a
"market maker" who is privy to additional information, and equipped with a
specified objective, inform the players in the game? This is an informational
analogue of the mechanism design question, and views the information structure
of a game as a mathematical object to be designed, rather than an exogenous
variable.
We initiate a complexity-theoretic examination of the design of optimal
information structures in general Bayesian games, a task often referred to as
signaling. We focus on one of the simplest instantiations of the signaling
question: Bayesian zero-sum games, and a principal who must choose an
information structure maximizing the equilibrium payoff of one of the players.
In this setting, we show that optimal signaling is computationally intractable,
and in some cases hard to approximate, assuming that it is hard to recover a
planted clique from an Erdos-Renyi random graph. This is despite the fact that
equilibria in these games are computable in polynomial time, and therefore
suggests that the hardness of optimal signaling is a distinct phenomenon from
the hardness of equilibrium computation. Necessitated by the non-local nature
of information structures, en-route to our results we prove an "amplification
lemma" for the planted clique problem which may be of independent interest
Truthful Assignment without Money
We study the design of truthful mechanisms that do not use payments for the
generalized assignment problem (GAP) and its variants. An instance of the GAP
consists of a bipartite graph with jobs on one side and machines on the other.
Machines have capacities and edges have values and sizes; the goal is to
construct a welfare maximizing feasible assignment. In our model of private
valuations, motivated by impossibility results, the value and sizes on all
job-machine pairs are public information; however, whether an edge exists or
not in the bipartite graph is a job's private information.
We study several variants of the GAP starting with matching. For the
unweighted version, we give an optimal strategyproof mechanism; for maximum
weight bipartite matching, however, we show give a 2-approximate strategyproof
mechanism and show by a matching lowerbound that this is optimal. Next we study
knapsack-like problems, which are APX-hard. For these problems, we develop a
general LP-based technique that extends the ideas of Lavi and Swamy to reduce
designing a truthful mechanism without money to designing such a mechanism for
the fractional version of the problem, at a loss of a factor equal to the
integrality gap in the approximation ratio. We use this technique to obtain
strategyproof mechanisms with constant approximation ratios for these problems.
We then design an O(log n)-approximate strategyproof mechanism for the GAP by
reducing, with logarithmic loss in the approximation, to our solution for the
value-invariant GAP. Our technique may be of independent interest for designing
truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic
Commerce (EC), 201
Mechanisms for Risk Averse Agents, Without Loss
Auctions in which agents' payoffs are random variables have received
increased attention in recent years. In particular, recent work in algorithmic
mechanism design has produced mechanisms employing internal randomization,
partly in response to limitations on deterministic mechanisms imposed by
computational complexity. For many of these mechanisms, which are often
referred to as truthful-in-expectation, incentive compatibility is contingent
on the assumption that agents are risk-neutral. These mechanisms have been
criticized on the grounds that this assumption is too strong, because "real"
agents are typically risk averse, and moreover their precise attitude towards
risk is typically unknown a-priori. In response, researchers in algorithmic
mechanism design have sought the design of universally-truthful mechanisms ---
mechanisms for which incentive-compatibility makes no assumptions regarding
agents' attitudes towards risk.
We show that any truthful-in-expectation mechanism can be generically
transformed into a mechanism that is incentive compatible even when agents are
risk averse, without modifying the mechanism's allocation rule. The transformed
mechanism does not require reporting of agents' risk profiles. Equivalently,
our result can be stated as follows: Every (randomized) allocation rule that is
implementable in dominant strategies when players are risk neutral is also
implementable when players are endowed with an arbitrary and unknown concave
utility function for money.Comment: Presented at the workshop on risk aversion in algorithmic game theory
and mechanism design, held in conjunction with EC 201
Matroid Secretary Is Equivalent to Contention Resolution
We show that the matroid secretary problem is equivalent to correlated contention resolution in the online random-order model. Specifically, the matroid secretary conjecture is true if and only if every matroid admits an online random-order contention resolution scheme which, given an arbitrary (possibly correlated) prior distribution over subsets of the ground set, matches the balance ratio of the best offline scheme for that distribution up to a constant. We refer to such a scheme as universal. Our result indicates that the core challenge of the matroid secretary problem lies in resolving contention for positively correlated inputs, in particular when the positive correlation is benign in as much as offline contention resolution is concerned.
Our result builds on our previous work which establishes one direction of this equivalence, namely that the secretary conjecture implies universal random-order contention resolution, as well as a weak converse, which derives a matroid secretary algorithm from a random-order contention resolution scheme with only partial knowledge of the distribution. It is this weak converse that we strengthen in this paper: We show that universal random-order contention resolution for matroids, in the usual setting of a fully known prior distribution, suffices to resolve the matroid secretary conjecture in the affirmative
The Outer Limits of Contention Resolution on Matroids and Connections to the Secretary Problem
Contention resolution schemes have proven to be a useful and unifying abstraction for a variety of constrained optimization problems, in both offline and online arrival models. Much of prior work restricts attention to product distributions for the input set of elements, and studies contention resolution for increasingly general packing constraints, both offline and online. In this paper, we instead focus on generalizing the input distribution, restricting attention to matroid constraints in both the offline and online random arrival models. In particular, we study contention resolution when the input set is arbitrarily distributed, and may exhibit positive and/or negative correlations between elements. We characterize the distributions for which offline contention resolution is possible, and establish some of their basic closure properties. Our characterization can be interpreted as a distributional generalization of the matroid covering theorem. For the online random arrival model, we show that contention resolution is intimately tied to the secretary problem via two results. First, we show that a competitive algorithm for the matroid secretary problem implies that online contention resolution is essentially as powerful as offline contention resolution for matroids, so long as the algorithm is given the input distribution. Second, we reduce the matroid secretary problem to the design of an online contention resolution scheme of a particular form
On the Distortion of Voting with Multiple Representative Candidates
We study positional voting rules when candidates and voters are embedded in a
common metric space, and cardinal preferences are naturally given by distances
in the metric space. In a positional voting rule, each candidate receives a
score from each ballot based on the ballot's rank order; the candidate with the
highest total score wins the election. The cost of a candidate is his sum of
distances to all voters, and the distortion of an election is the ratio between
the cost of the elected candidate and the cost of the optimum candidate. We
consider the case when candidates are representative of the population, in the
sense that they are drawn i.i.d. from the population of the voters, and analyze
the expected distortion of positional voting rules.
Our main result is a clean and tight characterization of positional voting
rules that have constant expected distortion (independent of the number of
candidates and the metric space). Our characterization result immediately
implies constant expected distortion for Borda Count and elections in which
each voter approves a constant fraction of all candidates. On the other hand,
we obtain super-constant expected distortion for Plurality, Veto, and approving
a constant number of candidates. These results contrast with previous results
on voting with metric preferences: When the candidates are chosen
adversarially, all of the preceding voting rules have distortion linear in the
number of candidates or voters. Thus, the model of representative candidates
allows us to distinguish voting rules which seem equally bad in the worst case
- …