606 research outputs found
The Fermi Surface Effect on Magnetic Interlayer Coupling
The oscillating magnetic interlayer coupling of Fe over spacer layers
consisting of CuPd alloys is investigated by first principles
density functional theory. The amplitude, period and phase of the coupling, as
well as the disorder-induced decay, are analyzed in detail and the consistency
to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory is discussed. For the first
time an effect of the Fermi surface nesting strength on the amplitude is
established from first principles calculations. An unexpected variation of the
phase and disorder-induced decay is obtained and the results are discussed in
terms of asymptotics
An investigation of the sensitivity of the Fermi surface to the treatment of exchange and correlation
The Group V and VI transition metals share a common Fermi surface feature of
hole ellipsoids at the N point in the Brillouin zone. In clear contrast to the
other Fermi surface sheets, which are purely of d character, these arise from a
band that has a significant proportion of p character. By performing local
density approximation (LDA), generalized gradient approximation (GGA), strongly
constrained and appropriately normed (SCAN) meta-GGA, and GW approximation
calculations, we find that the p character part of this band (and therefore the
Fermi surface) is particularly sensitive to the exchange-correlation
approximation. LDA and GGA calculations inadequately describe this feature,
predicting N hole ellipsoid sizes that are consistently too large in comparison
to various experimental measurements, whereas quasiparticle self-consistent GW
calculations predict a size that is slightly too small (and non-self-consistent
GW calculations that use an LDA starting point predict a size that is much too
small). Overall, for the metals tested here, SCAN provides the most accurate
Fermi surface predictions, mostly correcting the discrepancies between
measurements and calculations that were observed when LDA calculations were
used. However, none of the tested exchange-correlation approximations succeeds
in simultaneously bringing all of the measurable properties of these metals
into good experimental agreement, particularly where magnetism is concerned.
The SCAN calculations predict antiferromagnetic moments for Cr that are 3 times
larger than the experimental value (1.90 compared to 0.62 )
Point-contact study of the LuNi2B2C borocarbide superconducting film
We present point-contact (PC) Andreev-reflection measurements of a
superconducting epitaxial c-axis oriented nickel borocarbide film LuNi2B2C
(Tc=15.9 K). The averaged value of the superconducting gap is found to be 2.6
+/-0.2 meV in the one-gap approach, whereas the two-gap approach results in
2.14+/-0.36 meV and 3.0+/-0.27 meV. The better fit of the Andreev-reflection
spectra for the LuNi2B2C - Cu PC obtained by the two-gap approach provides
evidence for multiband superconductivity in LuNi2B2C. For the first time, PC
electron-phonon interaction (EPI) spectra have been measured for this compound.
They demonstrate pronounced phonon maximum at 8.5+/-0.4meV and a second shallow
one at 15.8+/-0.6 meV. The electron-phonon coupling constant estimated from the
PC EPI spectra turned out to be small (~ 0.1), like in other superconducting
rare-earth nickel borocarbides. Possible reasons for this are discussed.Comment: 5 pages, 5 figures, V2: figs. 2 & 5 captions are corrected, and new
Refs. 4, 6, 12, 13, 14 are adde
Fermiology via the electron momentum distribution
Investigations of the Fermi surface via the electron momentum distribution
reconstructed from either angular correlation of annihilation radiation (or
Compton scattering) experimental spectra are presented. The basis of these
experiments and mathematical methods applied in reconstructing
three-dimensional densities from line (or plane) projections measured in these
experiments are described. The review of papers where such techniques have been
applied to study the Fermi surface of metallic materials with showing their
main results is also done.Comment: 22 pages, 9 Figures, 4 Table
Nesting properties and anisotropy of the Fermi surface of LuNiBC
The rare earth nickel borocarbides, with the generic formula
NiBC, have recently been shown to display a rich variety of
phenomena. Most striking has been the competition between, and even coexistence
of, antiferromagnetism and superconductivity. We have measured the Fermi
surface (FS) of LuNiBC, and shown that it possesses nesting
features capable of explaining some of the phenomena experimentally observed.
In particular, it had previously been conjectured that a particular sheet of FS
is responsible for the modulated magnetic structures manifest in some of the
series. We report the first direct experimental observation of this sheet.Comment: 4 pages, 4 PS figure
Colossal Positive Magnetoresistance in a Doped Nearly Magnetic Semiconductor
We report on a positive colossal magnetoresistance (MR) induced by
metallization of FeSb, a nearly magnetic or "Kondo" semiconductor with 3d
ions. We discuss contribution of orbital MR and quantum interference to
enhanced magnetic field response of electrical resistivity.Comment: 5 pages, 5 figure
The mechanical relaxation study of polycrystalline MgCNi3
The mechanical relaxation spectra of a superconducting and a
non-superconducting MgCNi3 samples were measured from liquid nitrogen
temperature to room temperature at frequency of kilohertz. There are two
internal friction peaks (at 300 K labeled as P1 and 125 K as P2) for the
superconducting sample. For the non-superconducting one, the position of P1
shifts to 250 K, while P2 is almost completely depressed. It is found that the
peak position of P2 shifts towards higher temperature under higher measuring
frequency. The calculated activation energy is 0.13eV. We propose an
explanation relating P2 to the carbon atom jumping among the off-center
positions. And further we expect that the behaviors of carbon atoms maybe
correspond to the normal state crossovers around 150 K and 50 K observed by
many other experiments.Comment: 4 figure
Heavy quasiparticles in the ferromagnetic superconductor ZrZn2
We report a study of the de Haas-van Alphen effect in the normal state of the
ferromagnetic superconductor ZrZn2. Our results are generally consistent with
an LMTO band structure calculation which predicts four exchange-split Fermi
surface sheets. Quasiparticle effective masses are enhanced by a factor of
about 4.9 implying a strong coupling to magnetic excitations or phonons. Our
measurements provide insight in to the mechanism for superconductivity and
unusual thermodynamic properties of ZrZn2.Comment: 5 pages, 2 figures (one color
Dispersive Gap Mode of Phonons in Anisotropic Superconductors
We estimate the effect of the superconducting gap anisotropy in the
dispersive gap mode of phonons, which is observed by the neutron scattering on
borocarbide superconductors. We numerically analyze the phonon spectrum
considering the electron-phonon coupling, and examine contributions coming from
the gap suppression and the sign change of the pairing function on the Fermi
surface. When the sign of the pairing function is changed by the nesting
translation, the gap mode does not appear. We also discuss the suppression of
the phonon softening of the Kohn anomaly due to the onset of superconductivity.
We demonstrate that observation of the gap dispersive mode is useful for
sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp
- …