1,375 research outputs found
The XV-15 tilt rotor research aircraft
The design characteristics of the XV-15 Tilt rotor research aircraft are presented. Particular attention is given to the following: control system; conversion system; and propulsion system. Flight test results are also reported
Quantification of temporal fault trees based on fuzzy set theory
© Springer International Publishing Switzerland 2014. Fault tree analysis (FTA) has been modified in different ways to make it capable of performing quantitative and qualitative safety analysis with temporal gates, thereby overcoming its limitation in capturing sequential failure behaviour. However, for many systems, it is often very difficult to have exact failure rates of components due to increased complexity of systems, scarcity of necessary statistical data etc. To overcome this problem, this paper presents a methodology based on fuzzy set theory to quantify temporal fault trees. This makes the imprecision in available failure data more explicit and helps to obtain a range of most probable values for the top event probability
Quality of life and well-being of carers of people with dementia: are there differences between working and nonworking carers? Results from the IDEAL program
The aim of this study was to identify the differences in quality of life (QoL) and well-being between working and nonworking dementia carers and the relative contribution of psychological characteristics, caregiving experience, and social support. Multiple regressions modeled the contribution of working status, caregiver experiences, and psychological and social resources to carer QoL (EQ-5D) and well-being (WHO-5). After controlling for age, gender, carerâdyad relationship, and severity of dementia, working status contributed significant variance to EQ-5D (2%) but not to WHO-5 scores. Independent of working status, higher self-esteem and reduced stress contributed to variance in both models. Self-efficacy, social support, and positive perceptions of caregiving additionally contributed to higher WHO-5 scores. Working status associated with higher EQ-5D QoL; this may reflect the sustained sense of independence associated with supported work opportunities for carers. Outside of working status, the findings support the importance of psychological and social factors as targets to improved mental health for dementia carers
Model independent determination of the shape function for inclusive B decays and of the structure functions in DIS
We present a method to compute, by numerical simulations of lattice QCD, the
inclusive semileptonic differential decay rates of heavy hadrons and the
structure functions which occur in deep inelastic scattering. The method is
based on first principles and does not require any model assumption. It allows
the prediction of the differential rate in B semileptonic decays for values of
the recoiling hadronic mass W ~ sqrt(M_B Lambda_QCD), which is in the relevant
region to extract |V_ub| from the end-point of the lepton spectrum in inclusive
decays.Comment: 16 pages, LaTeX fil
Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability
Coherent Synchrotron Radiation (CSR) can play an important role by not only
increasing the energy spread and emittance of a beam, but also leading to a
potential instability. Previous studies of the CSR induced longitudinal
instability were carried out for the CSR impedance due to dipole magnets.
However, many storage rings include long wigglers where a large fraction of the
synchrotron radiation is emitted. This includes high-luminosity factories such
as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future
linear colliders. In this paper, the instability due to the CSR impedance from
a wiggler is studied assuming a large wiggler parameter . The primary
consideration is a low frequency microwave-like instability, which arises near
the pipe cut-off frequency. Detailed results are presented on the growth rate
and threshold for the damping rings of several linear collider designs.
Finally, the optimization of the relative fraction of damping due to the
wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure
Deformed dimensional regularization for odd (and even) dimensional theories
I formulate a deformation of the dimensional-regularization technique that is
useful for theories where the common dimensional regularization does not apply.
The Dirac algebra is not dimensionally continued, to avoid inconsistencies with
the trace of an odd product of gamma matrices in odd dimensions. The
regularization is completed with an evanescent higher-derivative deformation,
which proves to be efficient in practical computations. This technique is
particularly convenient in three dimensions for Chern-Simons gauge fields,
two-component fermions and four-fermion models in the large N limit, eventually
coupled with quantum gravity. Differently from even dimensions, in odd
dimensions it is not always possible to have propagators with fully Lorentz
invariant denominators. The main features of the deformed technique are
illustrated in a set of sample calculations. The regularization is universal,
local, manifestly gauge-invariant and Lorentz invariant in the physical sector
of spacetime. In flat space power-like divergences are set to zero by default.
Infinitely many evanescent operators are automatically dropped.Comment: 27 pages, 3 figures; v2: expanded presentation of some arguments,
IJMP
The dilaton-dominated supersymmetry breaking scenario in the context of the non-minimal supersymmetric model
The phenomenological consequences of the dilaton-type soft supersymmetry
breaking terms in the context of the next to minimal supersymmetric standard
model are investigated. We always find a very low top quark mass. As a
consequence such string vacua are excluded by recent experimental results. The
viability of the solution of the term through the introduction of a gauge
singlet field is also briefly discussed.Comment: 10 pages,LATE
Hypoxia-Adaptation Involves Mitochondrial Metabolic Depression and Decreased ROS Leakage
Through long-term laboratory selection, we have generated a Drosophila melanogaster population that tolerates severe, normally lethal, level of hypoxia. This strain lives perpetually under severe hypoxic conditions (4% O2). In order to shed light on the mechanisms involved in this adaptation, we studied the respiratory function of isolated mitochondria from the thorax of hypoxia-adapted flies (AF) using polarographic oxygen consumption while monitoring superoxide generation by electron paramagnetic resonance (EPR) techniques. AF mitochondria exhibited a significant 30% decrease in respiratory rate during state 3, while enhancing the resting respiratory rate during State 4-oligo by 220%. The activity of individual electron transport complexes I, II and III were 107%, 65%, and 120% in AF mitochondria as compared to those isolated from control flies. The sharp decrease in complex II activity and modest increase in complexes I and III resulted in >60% reduction in superoxide leakage from AF mitochondria during both NAD+-linked state 3 and State 4-oligo respirations. These results provide evidence that flies with mitochondria exhibiting decreased succinate dehydrogenase activity and reduced superoxide leakage give flies an advantage for survival in long-term hypoxia
Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy
The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)âRu(II) analogs of the homodinuclear Cu(I)âCu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations
Science and Film-making
The essay reviews the literature, mostly historical, on the relationship between science and film-making, with a focus on the science documentary. It then discusses the circumstances of the emergence of the wildlife making-of documentary genre. The thesis examined here is that since the early days of cinema, film-making has evolved from being subordinate to science, to being an equal partner in the production of knowledge, controlled by non-scientists
- âŠ