1,045 research outputs found

    The geometry of sloppiness

    Get PDF
    The use of mathematical models in the sciences often involves the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness as initially introduced and define rigorously key concepts, such as `model manifold', in relation to concepts of structural identifiability. We redefine sloppiness conceptually as a comparison between the premetric on parameter space induced by measurement noise and a reference metric. This opens up the possibility of alternative quantification of sloppiness, beyond the standard use of the Fisher Information Matrix, which assumes that parameter space is equipped with the usual Euclidean metric and the measurement error is infinitesimal. Applications include parametric statistical models, explicit time dependent models, and ordinary differential equation models

    The geometry of Sloppiness

    Get PDF
    The use of mathematical models in the sciences often involves the estimation of unknown parameter values from data. Sloppiness provides information about the uncertainty of this task. In this paper, we develop a precise mathematical foundation for sloppiness as initially introduced and define rigorously key concepts, such as `model manifold', in relation to concepts of structural identifiability. We redefine sloppiness conceptually as a comparison between the premetric on parameter space induced by measurement noise and a reference metric. This opens up the possibility of alternative quantification of sloppiness, beyond the standard use of the Fisher Information Matrix, which assumes that parameter space is equipped with the usual Euclidean metric and the measurement error is infinitesimal. Applications include parametric statistical models, explicit time dependent models, and ordinary differential equation models

    Epidemics on contact networks: a general stochastic approach

    Full text link
    Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our systematic framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible (SIS) and susceptible-infectious-removed (SIR) dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.Comment: Main document: 16 pages, 7 figures. Electronic Supplementary Material (included): 6 pages, 1 tabl

    Norine, the knowledgebase dedicated to nonribosomal peptides, is now open to crowdsourcing

    Get PDF
    International audienceSince its creation in 2006, Norine remains the unique knowledgebase dedicated to non-ribosomal pep-tides (NRPs). These secondary metabolites, produced by bacteria and fungi, harbor diverse interesting biological activities (such as antibiotic, anti-tumor, siderophore or surfactant) directly related to the diversity of their structures. The Norine team goal is to collect the NRPs and provide tools to analyze them efficiently. We have developed a user-friendly interface and dedicated tools to provide a complete bioinformatics platform. The knowledgebase gathers abundant and valuable annotations on more than 1100 NRPs. To increase the quantity of described NRPs and improve the quality of associated annotations , we are now opening Norine to crowdsourc-ing. We believe that contributors from the scientific community are the best experts to annotate the NRPs they work on. We have developed MyNorine to facilitate the submission of new NRPs or modifications of stored ones. This article presents MyNorine and other novelties of Norine interface released since the first publication. Norine is freely accessible from the following URL: http://bioinfo.lifl.fr/NRP
    corecore