3 research outputs found

    The HD 260655 system : two rocky worlds transiting a bright M dwarf at 10 pc

    Get PDF
    We report the discovery of a multiplanetary system transiting the M0 V dwarf HD 260655 (GJ 239, TOI-4599). The system consists of at least two transiting planets, namely HD 260655 b, with a period of 2.77 d, a radius of Rb = 1.240 ± 0.023 R⊕, a mass of Mb = 2.14 ± 0.34 M⊕, and a bulk density of ρb = 6.2 ± 1.0 g cm−3, and HD 260655 c, with a period of 5.71 d, a radius of , a mass of Mc = 3.09 ± 0.48 M⊕, and a bulk density of g cm−3. The planets have been detected in transit by the Transiting Exoplanet Survey Satellite (TESS) mission and confirmed independently with archival and new precise radial velocities obtained with the HIRES and CARMENES instruments since 1998 and 2016, respectively. At a distance of 10 pc, HD 260655 has become the fourth closest known multitransiting planet system after HD 219134, LTT 1445 A, and AU Mic. Due to the apparent brightness of the host star (J = 6.7 mag), both planets are among the most suitable rocky worlds known today for atmospheric studies with the James Webb Space Telescope, both in transmission and emission

    GJ 806 (TOI-4481): A bright nearby multi-planetary system with a transiting hot low-density super-Earth

    No full text
    One of the main scientific goals of the TESS mission is the discovery of transiting small planets around the closest and brightest stars in the sky. Here, using data from the CARMENES, MAROON-X, and HIRES spectrographs, together with TESS, we report the discovery and mass determination of a planetary system around the M1.5 V star GJ 806 (TOI-4481). GJ 806 is a bright (V=10.8 mag, J=7.3 mag) and nearby (d=12 pc) M dwarf that hosts at least two planets. The innermost planet, GJ 806 b, is transiting and has an ultra-short orbital period of 0.93 d, a radius of 1.331+-0.023 Re, a mass of 1.90+-0.17 Me, a mean density of 4.40+-0.45 g/cm3, and an equilibrium temperature of 940+-10 K. We detect a second, non-transiting, super-Earth planet in the system, GJ 806c, with an orbital period of 6.6 d, a minimum mass of 5.80+-0.30 Me, and an equilibrium temperature of 490+-5 K. The radial velocity data also shows evidence for a third periodicity at 13.6 d, although the current dataset does not provide sufficient evidence to unambiguously distinguish between a third super-Earth mass (Msin(i)=8.50+-0.45 Me) planet or stellar activity. Additionally, we report one transit observation of GJ 806 b taken with CARMENES in search for a possible extended atmosphere of H or He, but we can only place upper limits to its existence. This is not surprising as our evolutionary models support the idea that any possible primordial H/He atmosphere that GJ 806 b might have had, would long have been lost. However, GJ 806b's bulk density makes it likely that the planet hosts some type of volatile atmosphere. In fact, with a transmission spectroscopy metrics (TSM) of 44 and an emission spectroscopy metrics (ESM) of 24, GJ 806 b the third-ranked terrestrial planet around an M dwarf suitable for transmission spectroscopy studies, and the most promising terrestrial planet for emission spectroscopy studies.Comment: Under second review in A&A. This paper is NOT yet accepted, but it is made openly available to the community due to the approaching JWST deadlin

    TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf

    No full text
    We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI- 1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 ± 1.46 M⊕, which together with a radius of 2.08 ± 0.12 R⊕, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr. © The Authors 2023.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore