20 research outputs found

    Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

    Get PDF
    The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance, which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the finite-element analysis simulation and the experimental results have proven the validity of the proposed calculation method for leakage inductance

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Leakage inductance calculation for planar transformers with a magnetic shunt

    No full text
    The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance, which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the finite-element analysis simulation and the experimental results have proven the validity of the proposed calculation method for leakage inductance

    Genetic diversity and floral width variation in introduced and native populations of a long-lived woody perennial

    No full text
    Populations of introduced species in their new environments are expected to differ from native populations, due to processes such as genetic drift, founder effects and local adaptation, which can often result in rapid phenotypic change. Such processes can also lead to changes in the genetic structure of these populations. This study investigated the populations of Rhododendron ponticum in its introduced range in Ireland, where it is severely invasive, to determine both genetic and flower width diversity and differentiation. We compared six introduced Irish populations with two populations from R. ponticum's native range in Spain, using amplified fragment length polymorphism and simple sequence repeat genetic markers.We measured flower width, a trait that may affect pollinator visitation, from four Irish and four Spanish populations by measuring both the width at the corolla tip and tube base (nectar holder width). With both genetic markers, populations were differentiated between Ireland and Spain and from each other in both countries. However, populations displayed low genetic diversity (mean Nei's genetic diversity = 0.22), with the largest proportion (76-93 %) of genetic variation contained within, rather than between, populations. Although corolla width was highly variable between individuals within populations, tube width was significantly wider (>0.5 mm) in introduced, compared with native, populations. Our results show that the same species can have genetically distinct populations in both invasive and native regions, and that differences in floral width may occur, possibly in response to ecological sorting processes or local adaptation to pollinator communities

    Leakage inductance calculation for planar transformers with a magnetic shunt

    No full text
    The magnetic shunt is generally inserted in a planar transformer to increase the leakage inductance, which can be utilized as the series inductor in resonant circuits such as the LLC resonant converter. This paper presents a calculation methodology for the leakage inductance of the transformer with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the finite-element analysis simulation and the experimental results have proven the validity of the proposed calculation method for leakage inductance

    PRIMA-1 MET

    No full text
    corecore