272 research outputs found

    Darkness Alters Maturation of Visual Cortex and Promotes Fast Recovery from Monocular Deprivation

    Get PDF
    SummaryThe existence of heightened brain plasticity during critical periods in early postnatal life is a central tenet of developmental sensory neuroscience and helps explain the enduring deficits induced by early abnormal sensory exposure [1, 2]. The human visual disorder amblyopia has been linked to unbalanced visual input to the two eyes in early postnatal visual cortical development and has been modeled in animals by depriving them of patterned visual input to one eye [3, 4], a procedure known as monocular deprivation (MD). We investigated the possibility that a period of darkness might reset the central visual pathways to a more plastic stage and hence increase the capacity for recovery from early MD. Here we show that a 10 day period of complete darkness reverses maturation of stable cytoskeleton components in kitten visual cortex and also results in rapid elimination of, or even immunity from, visual deficits linked to amblyogenic rearing by MD. The heightened instability of the cytoskeleton induced by darkness likely represents just one of many parallel molecular changes that promote visual recovery, possibly by release of the various brakes on cortical plasticity [2]

    The PRTB Rent Index. ESRI Research Notes 2013/2/4

    Get PDF
    Data from Census 2011 show that 28.8 per cent of households rent their accommodation. The Census also shows that, between 2006 and 2011, there was a dramatic increase in the share of households in private rented accommodation. Between 2006 and 2011 the number of households in Ireland increased by 187,000 or almost 13 per cent, to 1,649,000, while the number of households renting increased by 160,000. As a result of this change in tenure pattern, according to the 2011 Census, 18.5 per cent of households were in private rented accommodation, compared with 9.9 per cent in 2006

    Recovery of neurofilament following early monocular deprivation

    Get PDF
    Postnatal development of the mammalian geniculostriate visual pathway is partly guided by visually driven activity. Disruption of normal visual input during certain critical periods can alter the structure of neurons, as well as their connections and functional properties. Within the layers of the dorsal lateral geniculate nucleus (dLGN), a brief early period of monocular deprivation can alter the structure and soma size of neurons within deprived-eye-receiving layers. This modification of structure is accompanied by a marked reduction in labeling for neurofilament protein, a principle component of the stable cytoskeleton. This study examined the extent of neurofilament recovery in monocularly deprived cats that either had their deprived eye opened (binocular recovery), or had the deprivation reversed to the fellow eye (reverse occlusion). The loss of neurofilament and the reduction of soma size caused by monocular deprivation were ameliorated equally and substantially in both recovery conditions after 8 days. The degree to which this recovery was dependent on visually driven activity was examined by placing monocularly deprived animals in complete darkness. Though monocularly deprived animals placed in darkness showed recovery of soma size in deprived layers, the manipulation catalyzed a loss of neurofilament labeling that extended to non-deprived layers as well. Overall, these results indicate that both recovery of soma size and neurofilament labeling is achieved by removal of the competitive disadvantage of the deprived eye. However, while the former occurred even in the absence of visually driven activity, recovery of neurofilament did not. The finding that a period of darkness produced an overall loss of neurofilament throughout the dLGN suggests that this experiential manipulation may cause the visual pathways to revert to an earlier more plastic developmental stage. It is possible that short periods of darkness could be incorporated as a component of therapeutic measures for treatment of deprivation-induced disorders such as amblyopia

    A General Security Approach for Soft-information Decoding against Smart Bursty Jammers

    Full text link
    Malicious attacks such as jamming can cause significant disruption or complete denial of service (DoS) to wireless communication protocols. Moreover, jamming devices are getting smarter, making them difficult to detect. Forward error correction, which adds redundancy to data, is commonly deployed to protect communications against the deleterious effects of channel noise. Soft-information error correction decoders obtain reliability information from the receiver to inform their decoding, but in the presence of a jammer such information is misleading and results in degraded error correction performance. As decoders assume noise occurs independently to each bit, a bursty jammer will lead to greater degradation in performance than a non-bursty one. Here we establish, however, that such temporal dependencies can aid inferences on which bits have been subjected to jamming, thus enabling counter-measures. In particular, we introduce a pre-decoding processing step that updates log-likelihood ratio (LLR) reliability information to reflect inferences in the presence of a jammer, enabling improved decoding performance for any soft detection decoder. The proposed method requires no alteration to the decoding algorithm. Simulation results show that the method correctly infers a significant proportion of jamming in any received frame. Results with one particular decoding algorithm, the recently introduced ORBGRAND, show that the proposed method reduces the block-error rate (BLER) by an order of magnitude for a selection of codes, and prevents complete DoS at the receiver.Comment: Accepted for GLOBECOM 2022 Workshops. Contains 7 pages and 7 figure

    Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    Get PDF
    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance the radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we utilized zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1-4 cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a 2-fold increase in mortality following exposure to 40 Gy by 96 hours post fertilization (hpf) and developed distinct radiation-induced defects in midline development (curly-up phenotype) at higher rates when compared to embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared to embryos treated with flavopiridol. This was particularly evident for the IR-induced curly-up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model

    Altered Thalamocortical Development in the SAP102 Knockout Model of Intellectual Disability

    Get PDF
    Genetic mutations known to cause intellectual disabilities (IDs) are concentrated in specific sets of genes including both those encoding synaptic proteins and those expressed during early development. We have characterized the effect of genetic deletion of Dlg3, an ID-related gene encoding the synaptic NMDA-receptor interacting protein synapse-associated protein 102 (SAP102), on development of the mouse somatosensory cortex. SAP102 is the main representative of the PSD-95 family of postsynaptic MAGUK proteins during early development and is proposed to play a role in stabilizing receptors at immature synapses. Genetic deletion of SAP102 caused a reduction in the total number of thalamocortical (TC) axons innervating the somatosensory cortex, but did not affect the segregation of barrels. On a synaptic level SAP102 knockout mice display a transient speeding of NMDA receptor kinetics during the critical period for TC plasticity, despite no reduction in GluN2B-mediated component of synaptic transmission. These data indicated an interesting dissociation between receptor kinetics and NMDA subunit expression. Following the critical period NMDA receptor function was unaffected by loss of SAP102 but there was a reduction in the divergence of TC connectivity. These data suggest that changes in synaptic function early in development caused by mutations in SAP102 result in changes in network connectivity later in life

    Investigation of the efficacy and safety of retinal inactivation as a treatment for amblyopia in cats

    Get PDF
    IntroductionDeprivation of normal vision early in postnatal development elicits modifications of neural circuitry within the primary visual pathway that can cause a severe and intractable vision impairment (amblyopia). In cats, amblyopia is often modeled with monocular deprivation (MD), a procedure that involves temporarily closing the lids of one eye. Following long-term MD, brief inactivation of the dominant eye’s retina can promote recovery from the anatomical and physiological effects of MD. In consideration of retinal inactivation as a viable treatment for amblyopia it is imperative to compare its efficacy against conventional therapy, as well as assess the safety of its administration.MethodsIn the current study we compared the respective efficacies of retinal inactivation and occlusion of the dominant eye (reverse occlusion) to elicit physiological recovery from a prior long-term MD in cats. Because deprivation of form vision has been associated with development of myopia, we also examined whether ocular axial length or refractive error were altered by a period of retinal inactivation.ResultsThe results of this study demonstrate that after a period of MD, inactivation of the dominant eye for up to 10 days elicited significant recovery of visually-evoked potentials that was superior to the recovery measured after a comparable duration of reverse occlusion. After monocular retinal inactivation, measurements of ocular axial length and refractive error were not significantly altered from their pre-inactivation values. The rate of body weight gain also was not changed during the period of inactivation, indicating that general well-being was not affected.DiscussionThese results provide evidence that inactivation of the dominant eye after a period of amblyogenic rearing promotes better recovery than eye occlusion, and this recovery was achieved without development of form-deprivation myopia

    Increased Cell–Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice

    Get PDF
    Increasing connexin43 (Cx43) gap junctional conductance as a means to improve cardiac conduction has been proposed as a novel antiarrhythmic modality. Yet, transmission of molecules via gap junctions may be associated with increased infarct size. To determine whether maintaining open gap junction channels impacts on infarct size and induction of ventricular tachycardia (VT) following coronary occlusion, we expressed the pH- and voltage-independent connexin isoform connexin32 (Cx32) in ventricle and confirmed Cx32 expression. Wild-type (WT) mice injected with adenovirus-Cx32 (Cx32inj) were examined following coronary occlusion to determine infarct size and inducibility of VT. There was an increased infarct size in Cx32inj hearts as compared to WT (WT 22.9 ± 4%; Cx32inj 44.3 ± 5%; p < 0.05). Programmed electrical stimulation showed no difference in VT inducibility in WT and Cx32inj mice (VT was reproducibly inducible in 55% of shams and 50% of Cx32inj mice (p > 0.05). Following coronary occlusion, improving cell–cell communication increased infarct size, and conferred no antiarrhythmic benefit

    Human deprivation amblyopia: treatment insights from animal models

    Get PDF
    Amblyopia is a common visual impairment that develops during the early years of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced refractive state, or obstruction to form vision. All of these conditions prevent normal vision and derail the typical development of neural connections within the visual system. Among the subtypes of amblyopia, the most debilitating and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human studies focused on advancing the standard of care for amblyopia have largely avoided recruitment of patients with this rare but severe impairment subtype. In this review, we delineate characteristics of deprivation amblyopia and underscore the critical need for new and more effective therapy. Animal models offer a unique opportunity to address this unmet need by enabling the development of unconventional and potent amblyopia therapies that cannot be pioneered in humans. Insights derived from studies using animal models are discussed as potential therapeutic innovations for the remediation of deprivation amblyopia. Retinal inactivation is highlighted as an emerging therapy that exhibits efficacy against the effects of monocular deprivation at ages when conventional therapy is ineffective, and recovery occurs without apparent detriment to the treated eye
    corecore