492 research outputs found
μSR study of stoichiometric NbFe2
The magnetic ground state of nominally stoichiometric single crystalline NbFe2 is investigated by bulk magnetisation and muon spin relaxation techniques. Magnetic order clearly emerges below the critical temperature TN=10.3 K and is dominated by randomly orientated quasi-static moments. The local field distribution observed by muons can be explained by the phenomenological Gaussian-broadened-Gaussian Kubo Toyabe relaxation function. The observed short range order could be used to describe a new magnetic ground state, but a helical spin density wave with an incommensurate amplitude modulation cannot be ruled out. The sensitivity of μSR to the local magnetic field distribution in the vicinity of the quantum critical point (QCP) in NbFe2 is clearly demonstrated via comparison with already published work. This suggests detailed measurements of the muon relaxation as the QCP is approached will reveal further details of the field distribution and fluctuations in Nb1−yFe2+yNb1−yFe2+y
Determination of spin and orbital magnetization in the ferromagnetic superconductor UCoGe
International audienceThe magnetism in the ferromagnetic superconductor UCoGe has been studied using a combination of magnetic Compton scattering, bulk magnetization, X-ray magnetic circular dichroism and electronic structure calculations, in order to determine the spin and orbital moments. The experimentally observed total spin moment, Ms, was found to be-0.24 ± 0.05 µB at 5 T. By comparison with the total moment of 0.16 ± 0.01 µB, the orbital moment, M l , was determined to be 0.40 ± 0.05 µB. The U and Co spin moments were determined to be antiparallel. We find that the U 5f electrons carry a spin moment of Us ≈-0.30 µB and that there is a Co spin moment of Cos ≈ 0.06 µB induced via hybridization. The ratio U l /Us, of −1.3 ± 0.3, shows the U moment to be itinerant. In order to ensure an accurate description of the properties of 5f systems, and to provide a critical test of the theoretical approaches, it is clearly necessary to obtain experimental data for both the spin and orbital moments, rather than just the total magnetic moment. This can be achieved simply by measuring the spin moment with magnetic Compton scattering and comparing this to the total moment from bulk magnetizatio
4f spin density in the reentrant ferromagnet SmMn2Ge2
The spin contribution to the magnetic moment in SmMn2Ge2 has been measured by
magnetic Compton scattering in both the low and high temperature ferromagnetic
phases. At low temperature, the Sm site is shown to possess a large 4f spin
moment of 3.4 +/- 0.1 Bohr magnetons, aligned antiparallel to the total
magnetic moment. At high temperature, the data show conclusively that ordered
magnetic moments are present on the samarium site.Comment: 5 pages, 2 figures, transferred from PRL to PRB (Rapid Comm.
Charge and mass effects on the evaporation of higher-dimensional rotating black holes
To study the dynamics of discharge of a brane black hole in TeV gravity
scenarios, we obtain the approximate electromagnetic field due to the charged
black hole, by solving Maxwell's equations perturbatively on the brane. In
addition, arguments are given for brane metric corrections due to backreaction.
We couple brane scalar and brane fermion fields with non-zero mass and charge
to the background, and study the Hawking radiation process using well known low
energy approximations as well as a WKB approximation in the high energy limit.
We argue that contrary to common claims, the initial evaporation is not
dominated by fast Schwinger discharge.Comment: Published version. Minor typos corrected. 29 pages, 5 figure
Electronic theory for the normal state spin dynamics in SrRuO: anisotropy due to spin-orbit coupling
Using a three-band Hubbard Hamiltonian we calculate within the
random-phase-approximation the spin susceptibility, , and
NMR spin-lattice relaxation rate, 1/T, in the normal state of the triplet
superconductor SrRuO and obtain quantitative agreement with
experimental data. Most importantly, we find that due to spin-orbit coupling
the out-of-plane component of the spin susceptibility becomes at
low temperatures two times larger than the in-plane one. As a consequence
strong incommensurate antiferromagnetic fluctuations of the
quasi-one-dimensional - and -bands point into the -direction. Our
results provide further evidence for the importance of spin fluctuations for
triplet superconductivity in SrRuO.Comment: revised versio
Transport and the Order Parameter of Superconducting SrRuO
Recent experiments make it appear more likely that the order parameter of the
unconventional superconductor SrRuO has a spin-triplet -wave
symmetry. We study ultrasonic absorption and thermal conductivity of
superconducting SrRuO and fit to the recent data for various -wave
candidates. It is shown that only -wave symmetry can account
qualitatively for the transport data.Comment: 4 pages, 2 figures, references added and update
Quasi-particle Lifetimes in a d_{x^2-y^2} Superconductor
We consider the lifetime of quasi-particles in a d-wave superconductor due to
scattering from antiferromagnetic spin-fluctuations, and explicitly separate
the contribution from Umklapp processes which determines the electrical
conductivity. Results for the temperature dependence of the total scattering
rate and the Umklapp scattering rate are compared with relaxation rates
obtained from thermal and microwave conductivity measurements, respectively.Comment: 14 pages, 4 figure
Anisotropy in the Antiferromagnetic Spin Fluctuations of Sr2RuO4
It has been proposed that Sr_2RuO_4 exhibits spin triplet superconductivity
mediated by ferromagnetic fluctuations. So far neutron scattering experiments
have failed to detect any clear evidence of ferromagnetic spin fluctuations
but, instead, this type of experiments has been successful in confirming the
existence of incommensurate spin fluctuations near q=(1/3 1/3 0). For this
reason there have been many efforts to associate the contributions of such
incommensurate fluctuations to the mechanism of its superconductivity. Our
unpolarized inelastic neutron scattering measurements revealed that these
incommensurate spin fluctuations possess c-axis anisotropy with an anisotropic
factor \chi''_{c}/\chi''_{a,b} of \sim 2.8. This result is consistent with some
theoretical ideas that the incommensurate spin fluctuations with a c-axis
anisotropy can be a origin of p-wave superconductivity of this material.Comment: 5 pages, 3 figures; accepted for publication in PR
Detailed study of the ac susceptibility of Sr2RuO4 in oriented magnetic fields
We have investigated the ac susceptibility of the spin triplet superconductor
SrRuO as a function of magnetic field in various directions at
temperatures down to 60 mK. We have focused on the in-plane field configuration
(polar angle ), which is a prerequisite for inducing
multiple superconducting phases in SrRuO. We have found that the
previous attribution of a pronounced feature in the ac susceptibility to the
second superconducting transition itself is not in accord with recent
measurements of the thermal conductivity or of the specific heat. We propose
that the pronounced feature is a consequence of additional involvement of
vortex pinning originating from the second superconducting transition.Comment: Accepted for publication in Phys. Rev.
Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the
spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting
transition temperature Tc of ~3 K. We have investigated the field-temperature
(H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to
the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have
found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual
temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have
also investigated the dependence of Hc2 on the angle between the field and the
ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass
model apparently fails to reproduce the angle dependence, particularly near H
// c and at low temperatures. We propose that all of these charecteric features
can be explained, at least in a qualitative fashion, on the basis of a theory
by Sigrist and Monien that assumes surface superconductivity with a
two-component order parameter occurring at the interface between Sr2RuO4 and Ru
inclusions. This provides evidence of the chiral state postulated for the 1.5-K
phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
- …