84 research outputs found
Mesenchymal stem cells to augment therapeutic angiogenesis in hind-limb ischemia models: how important is their source?
Murine models of hind-limb ischemia are frequently used to assess interventions aimed at improving therapeutic angiogenesis in critical limb ischemia. Much of the current focus of angiogenesis lies with mesenchymal stem cells (MSCs). Important considerations when using these models include the strain of mouse, because some strains recover from ischemia more rapidly than others, and the MSC source. MSCs derived from certain strains generate increased levels of growth factors such as vascular endothelial growth factor. This may significantly affect the limb?s ability to generate collateral vessels
Mechanical characterization of a customized decellularized scaffold for vascular tissue engineering.
Several challenges persist when attempting to utilize decellularized tissue as a scaffold for vascular tissue engineering. Namely: poor cell infiltration/migration, excessive culture times associated with repopulating the scaffolds, and the achievement of a quiescent medial layer. In an attempt to create an optimum vascular scaffold, we customized the properties of decellularized porcine carotid arteries by: (i) creating cavities within the medial layer to allow direct injection of cells, and (ii) controlling the amount of collagen digestion to increase the porosity. Histological examination of our customized scaffold revealed a highly porous tissue structure containing consistent medial cavities running longitudinally through the porous scaffold wall. Mechanical testing of the customized scaffold showed that our minimal localized disruption to the ECM does not have a detrimental effect on the bulk mechanical response of the tissue. The results demonstrate that an increased stiffness and reduced distensibility occurs after decellularization when compared to the native tissue, however post scaffold customization we can revert the scaffold tensile properties back to that of the native tissue. This most noteworthy result occurs in the elastin dominant phase of the tensile response of the scaffold, indicating that no disruption has occurred to the elastin network by our decellularization and customization techniques. Additionally, the bulk seeding potential of the customized scaffold was demonstrated by direct injection of human smooth muscle cells through the medial cavities. The optimum cell dispersion was observed in the highest porosity scaffold, with large cell numbers retained within the medial layer after 24 h static culture. In summary, this study presents a novel customized decellularized vascular scaffold that has the capability of bulk seeding the media, and in tandem to this method, the porosity of the scaffold has been increased without compromising the mechanical integrity
Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis.
Bone grafts are the second most transplanted materials worldwide at a global cost to healthcare systems valued over $30 billion every year. The influence of microRNAs in the regenerative capacity of stem cells offers vast therapeutic potential towards bone grafting; however their efficient delivery to the target site remains a major challenge. This study describes how the functionalisation of porous collagen-nanohydroxyapatite (nHA) scaffolds with miR-133a inhibiting complexes, delivered using non-viral nHA particles, enhanced human mesenchymal stem cell-mediated osteogenesis through the novel focus on a key activator of osteogenesis, Runx2. This study showed enhanced Runx2 and osteocalcin expression, as well as increased alkaline phosphatase activity and calcium deposition, thus demonstrating a further enhanced therapeutic potential of a biomaterial previously optimised for bone repair applications. The promising features of this platform offer potential for a myriad of applications beyond bone repair and tissue engineering, thus presenting a new paradigm for microRNA-based therapeutics
Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold.
Vascularization and bone repair are accelerated by a series of gene-activated scaffolds delivering both an angiogenic and an osteogenic gene. Stem cell-mediated osteogenesis in vitro, in addition to increased vascularization and bone repair by host cells in vivo, is enhanced using all systems while the use of the nanohydroxyapatite vector to deliver both genes markedly enhances bone healing
Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression.
Various forms of mechanical stimulation have been shown to enhance chondrogenesis of mesenchymal stem cells (MSCs). However, the response of MSCs undergoing chondrogenesis to such signals has been shown to depend on the temporal application of loading. The objective of this study was to determine the effect of dynamic compression on cartilage-matrix-specific gene expression and to relate this response to the local biochemical environment and cell phenotype at the time of loading. At 0, 7, 14, and 21 days extracellular matrix (ECM) deposition within MSC-seeded agarose hydrogels due to transforming growth factor-β3 stimulation was determined biochemically and histologically, and then reverse transcription-polymerase chain reaction was used to examine the effects of dynamic compression on cartilage-matrix-specific gene expression. The results of these experiments show that the local environment in the core of the constructs is more favorable for chondrogenesis in comparison to the annulus, as evident from both ECM synthesis and gene expression. Additionally, we found that the response of the cells to mechanical stimulus varied with both the spatial region within the constructs and the temporal application of loading. Dynamic compression applied at day 21 was found to enhance levels of cartilage matrix gene expression following a peak in expression levels at day 14 in free swelling constructs, suggesting that mechanical signals play a key role in the maintenance of a chondrogenic phenotype. The application of mechanical stimulus to enhance cartilage ECM synthesis may be an important tool in regenerative medicine-based cartilage repair. The results of this study suggest that a chondrogenic phenotype and/or a well-developed pericellular matrix must first be established before dynamic compression can have a positive effect on cartilage-matrix-specific gene expression
Implantable Therapeutic Reservoir Systems for Diverse Clinical Applications in Large Animal Models
Regenerative medicine approaches, specifically stem cell technologies, have demonstrated significant potential to treat a diverse array of pathologies. However, such approaches have resulted in a modest clinical benefit, which may be attributed to poor cell retention/survival at the disease site. A delivery system that facilitates regional and repeated delivery to target tissues can provide enhanced clinical efficacy of cell therapies when localized delivery of high doses of cells is required. In this study, a new regenerative reservoir platform (Regenervoir) is described for use in large animal models, with relevance to cardiac, abdominal, and soft tissue pathologies. Regenervoir incorporates multiple novel design features essential for clinical translation, with a focus on scalability, mechanism of delivery, fixation to target tissue, and filling/refilling with a therapeutic cargo, and is demonstrated in an array of clinical applications that are easily translated to human studies. Regenervoir consists of a porous reservoir fabricated from a single material, a flexible thermoplastic polymer, capable of delivering cargo via fill lines to target tissues. A radiopaque shear thinning hydrogel can be delivered to the therapy reservoir and multiple fixation methods (laparoscopic tacks and cyanoacrylate bioadhesive) can be used to secure Regenervoir to target tissues through a minimally invasive approach.In this study, a new regenerative reservoir platform (Regenervoir) is described for use in large animal models that are easily translated to human studies, with relevance to cardiac, abdominal, and soft tissue pathologies. Regenervoir incorporates multiple novel design features essential for clinical translation, with a focus on scalability, mechanism of delivery, fixation, and filling/refilling with a therapeutic cargo.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155890/1/adhm202000305.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155890/2/adhm202000305_am.pd
Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial
Background
Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear.
Methods
RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047.
Findings
Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths.
Interpretation
Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population
Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial
Background
Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain.
Methods
RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and
ClinicalTrials.gov
,
NCT00541047
.
Findings
Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths.
Interpretation
Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy.
Funding
Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure
As treatments for myocardial infarction (MI) continue to improve, the population of people suffering from heart failure (HF) is rising significantly. Novel treatment strategies aimed at achieving long-term functional stabilisation and improvement in heart function post MI include the delivery of biomaterial hydrogels and myocardial matrix-based therapies to the left ventricle wall. Individually alginate hydrogels and myocardial matrix-based therapies are at the most advanced stages of commercial/clinical development for this potential treatment option. However, despite these individual successes, the potential synergistic effect gained by combining the two therapies remains unexplored. This study serves as a translational step in evaluating the minimally invasive delivery of dual acting alginate-based hydrogels to the heart. We have successfully developed new production methods for hybrid alginate/extracellular matrix (ECM) hydrogels. We have identified that the high G block alginate/ECM hybrid hydrogel has appropriate rheological and mechanical properties (1.6 KPa storage modulus, 29 KPa compressive modulus and 14 KPa dynamic modulus at day 1) and can be delivered using a minimally invasive delivery device. Furthermore, we have determined that these novel hydrogels are not cytotoxic and are capable of enhancing the metabolic activity of dermal fibroblasts in vitro (p < 0.01). Overall these results suggest that an effective minimally invasive HF treatment option could be achieved by combining alginate and ECM particles.AMCARE project funded by European Union’s ‘Seventh Framework’ Programme for research, technological development and demonstration under Grant Agreement no. NMP3-SME-2013-604531.peer-reviewed2019-12-0
Resveratrol significantly improves cell survival in comparison to dexrazoxane and carvedilol in a h9c2 model of doxorubicin induced cardiotoxicity
Cancer is one of the leading causes of deaths worldwide with 18.1 million deaths per year. Although there have been significant advances in anti-cancer therapies, they can often result in side effects with cardiovascular complications being the most severe. Dexrazoxane is the only currently approved treatment for prevention of anthracycline induced cardiotoxicity but there are concerns about its use due to the development of secondary malignancies and myelodysplastic syndrome. Additionally, it is only recommended in patients who are due to receive a total cumulative dose of 300 mg/m2 of doxorubicin or 540 mg/m2 of epirubicin. Thus, there exists an urgent need to develop new therapeutic strategies to counteract anthracycline induced cardiotoxicity. The h9c2 cardiomyoblast was investigated for its differentiation capacity and used to screen and compare promising prophylactics for doxorubicin induced cardiotoxicity. The half maximal inhibitory concentration of doxorubicin was determined in differentiated h9c2 cells after 24 h of exposure, to establish a model for drug screening. Cells were treated with dexrazoxane, resveratrol, and carvedilol either 3 h or 24 h prior to doxorubicin treatment. The ability of these cardioprotectants to prevent cardiotoxicity was analysed using the cck-8 cell viability assay and the dichlorofluorescin diacetate (DCFDA) reactive oxygen species (ROS) assay. There was no significant increase in survival in treatment groups after 3 h, however, at 24 h, resveratrol significantly improved survival compared to all other groups (p < 0.05). Additionally, dexrazoxane and resveratrol significantly decreased ROS formation at 3 h (p < 0.05) and all groups significantly decreased ROS production at 24 h (p < 0.001). This work is the first comparison of these cardioprotectants and suggests that resveratrol may be a more effective treatment in the prevention of anthracycline induced cardiotoxicity, compared to dexrazoxane and carvedilol. However, further work will be needed in order to decipher the exact mechanism and potential of this drug in the clinic
- …