83 research outputs found

    Survivin gene silencing sensitizes prostate cancer cells to selenium growth inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate cancer is a leading cause of cancer-related death in men worldwide. Survivin is a member of the inhibitor of apoptosis (IAP) protein family that is expressed in the majority of human tumors including prostate cancer, but is barely detectable in terminally differentiated normal cells. Downregulation of survivin could sensitize prostate cancer cells to chemotherapeutic agents <it>in vitro </it>and <it>in vivo</it>. Selenium is an essential trace element. Several studies have shown that selenium compounds inhibit the growth of prostate cancer cells. The objective of this study is to investigate whether survivin gene silencing in conjunction with selenium treatment could enhance the therapeutic efficacy for prostate cancer and to elucidate the underlying mechanisms.</p> <p>Methods</p> <p>Expression of survivin was analyzed in a collection of normal and malignant prostatic tissues by immunohistochemical staining. <it>In vitro </it>studies were conducted in PC-3M, C4-2B, and 22Rv1 prostate cancer cells. The effect of selenium on survivin expression was analyzed by Western blotting and semi-quantitative RT-PCR. Survivin gene knockdown was carried out by transfecting cells with a short hairpin RNA (shRNA) designed against survivin. Cell proliferation was quantitated by the 3-(4,5-Dimethylthiazol-2-yl)- 2,5-Diphenyltetrazolium Bromide (MTT) assay and apoptosis by propidium iodide staining followed by flow cytometry analysis. Finally, <it>in vivo </it>tumor growth assay was performed by establishing PC-3M xenograft in nude mice and monitoring tumor growth following transfection and treatment.</p> <p>Results</p> <p>We found that survivin was undetectable in normal prostatic tissues but was highly expressed in prostate cancers. Survivin knockdown or selenium treatment inhibited the growth of prostate cancer cells, but the selenium effect was modest. In contrast to what have been observed in other cell lines, selenium treatment had little or no effect on survivin expression in several androgen-independent prostate cancer cell lines. Survivin knockdown sensitized these cells to selenium growth inhibition and apoptosis induction. In nude mice bearing PC-3M xenografts, survivin knockdown synergizes with selenium in inhibiting tumor growth.</p> <p>Conclusions</p> <p>Selenium could inhibit the growth of hormone-refractory prostate cancer cells both <it>in vitro </it>and <it>in vivo</it>, but the effects were modest. The growth inhibition was not mediated by downregulating survivin expression. Survivin silencing greatly enhanced the growth inhibitory effects of selenium.</p

    Trends in selenium status of South Australians

    Get PDF
    The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Objective: To assess trends in selenium status in South Australians from 1977 to 2002. Design: Six cross-sectional surveys. Participants: 117 participants in 1977, 30 in 1979, 96 and 103 (separate surveys) in 1987, 200 in 1988, and 288 volunteer blood donors in 2002. A total of 834 healthy Australian adults (mean age, 42 years [range, 17–71 years]; 445 were male). Main outcome measures: Plasma and whole blood selenium concentrations. Results: The 2002 survey yielded a mean plasma selenium concentration of 103 μg/L (SE, 0.65), which reached the estimated nutritional adequacy level of 100 μg/L plasma selenium. Mean whole blood selenium declined 20% from the 1977 and 1979 surveys (mean whole blood selenium concentration, 153 μg/L) to the 1987, 1988 and 2002 surveys (mean whole blood selenium concentration, 122 μg/L). Plasma selenium was higher in men (P = 0.01), and increased with age in both men and women (P = 0.008). Conclusions: In healthy South Australian adults sampled from 1977 to 2002, whole blood and plasma selenium concentrations were above those reported for most other countries and in most previous Australian studies, notwithstanding an apparent decline in selenium status from the late 1970s to the late 1980s.Graham H Lyons, Geoffrey J Judson, James C R Stangoulis, Lyndon T Palmer, Janine A Jones and Robin D Graha

    Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein and mRNA levels for several selenoproteins, such as glutathione peroxidase-1 (Gpx1), are down-regulated dramatically by selenium (Se) deficiency. These levels in rats increase sigmoidally with increasing dietary Se and reach defined plateaus at the Se requirement, making them sensitive biomarkers for Se deficiency. These levels, however, do not further increase with super-nutritional or toxic Se status, making them ineffective for detection of high Se status. Biomarkers for high Se status are needed as super-nutritional Se intakes are associated with beneficial as well as adverse health outcomes. To characterize Se regulation of the transcriptome, we conducted 3 microarray experiments in weanling mice and rats fed Se-deficient diets supplemented with up to 5 μg Se/g diet.</p> <p>Results</p> <p>There was no effect of Se status on growth of mice fed 0 to 0.2 μg Se/g diet or rats fed 0 to 2 μg Se/g diet, but rats fed 5 μg Se/g diet showed a 23% decrease in growth and elevated plasma alanine aminotransferase activity, indicating Se toxicity. Rats fed 5 μg Se/g diet had significantly altered expression of 1193 liver transcripts, whereas mice or rats fed ≤ 2 μg Se/g diet had < 10 transcripts significantly altered relative to Se-adequate animals within an experiment. Functional analysis of genes altered by Se toxicity showed enrichment in cell movement/morphogenesis, extracellular matrix, and development/angiogenesis processes. Genes up-regulated by Se deficiency were targets of the stress response transcription factor, Nrf2. Multiple regression analysis of transcripts significantly altered by 2 μg Se/g and Se-deficient diets identified an 11-transcript biomarker panel that accounted for 99% of the variation in liver Se concentration over the full range from 0 to 5 μg Se/g diet.</p> <p>Conclusion</p> <p>This study shows that Se toxicity (5 μg Se/g diet) in rats vastly alters the liver transcriptome whereas Se-deficiency or high but non-toxic Se intake elicits relatively few changes. This is the first evidence that a vastly expanded number of transcriptional changes itself can be a biomarker of Se toxicity, and that identified transcripts can be used to develop molecular biomarker panels that accurately predict super-nutritional and toxic Se status.</p

    5-α reductase inhibitors and prostate cancer prevention: where do we turn now?

    Get PDF
    With the lifetime risk of being diagnosed with prostate cancer so great, an effective chemopreventive agent could have a profound impact on the lives of men. Despite decades of searching for such an agent, physicians still do not have an approved drug to offer their patients. In this article, we outline current strategies for preventing prostate cancer in general, with a focus on the 5-α-reductase inhibitors (5-ARIs) finasteride and dutasteride. We discuss the two landmark randomized, controlled trials of finasteride and dutasteride, highlighting the controversies stemming from the results, and address the issue of 5-ARI use, including reasons why providers may be hesitant to use these agents for chemoprevention. We further discuss the recent US Food and Drug Administration ruling against the proposed new indication for dutasteride and the change to the labeling of finasteride, both of which were intended to permit physicians to use the drugs for chemoprevention. Finally, we discuss future directions for 5-ARI research

    A case–control study of selenium in nails and prostate cancer risk in British men

    Get PDF
    In view of the experimental evidence suggesting that the micronutrient selenium reduces prostate cancer risk, we investigated the association between the selenium level in fingernails, a measure of long-term selenium intake, and prostate cancer risk in a case-control study among 656 British men, conducted in 1989-1992. Nail clippings were taken at the time of recruitment and selenium concentration, measured using neutron activation techniques, was successfully assayed for 300 case-control pairs and varied six-fold among the controls (0.59 p.p.m.; interquartile range, 0.50-0.71 p.p.m.). Nail selenium concentration was not significantly associated with prostate cancer risk: men in the highest quartile of nail selenium had a slightly increased risk compared with men in the lowest quartile (OR 1.24, 95 CI, 0.73-2.10); for advanced prostate cancer, men in the highest quartile had a slightly reduced risk compared with men in the lowest quartile (OR 0.78, 95% CI, 0.27-2.25). These results suggest that selenium is not strongly associated with prostate cancer risk in British men

    Smoking and COX-2 Functional Polymorphisms Interact to Increase the Risk of Gastric Cardia Adenocarcinoma in Chinese Population

    Get PDF
    BACKGROUND: Over-expression and increased activity of cyclooxygenase (COX)-2 induced by smoking has been implicated in the development of cancer. This study aimed to explore the interaction between smoking and functional polymorphisms of COX-2 in modulation of gastric cardia adenocarcinoma (GCA) risk. METHODS AND FINDINGS: Three COX-2 polymorphisms, including -1195G>A (rs689466), -765G>C (rs20417), and 587Gly>Arg (rs3218625), were genotyped in 357 GCA patients and 985 controls. In the multivariate logistic regression analysis, we found that the -1195AA, -765GC, and 587Arg/Arg genotypes were associated with increased risk of GCA (OR = 1.50, 95% CI = 1.05-2.13; OR = 2.06, 95% CI = 1.29-3.29 and OR = 1.67, 95% CI = 1.04-2.66, respectively). Haplotype association analysis showed that compared with G(-1195)-G(-765)- G(Gly587Arg), the A(-1195)-C(-765)-A(Gly587Arg) conferred an increased risk of GCA (OR = 2.49, 95% CI = 1.54-4.01). Moreover, significant multiplicative interactions were observed between smoking and these three polymorphisms of -1195G>A, -765G>C, and 587Gly>Arg, even after correction by false discovery rate (FDR) method for multiple comparisons (FDR-P(interaction) = 0.006, 5.239×10(-4) and 0.017, respectively). Similarly, haplotypes incorporating these three polymorphisms also showed significant interaction with smoking in the development of GCA (P for multiplicative interaction = 2.65×10(-6)). CONCLUSION: These findings indicated that the functional polymorphisms of COX-2, in interaction with smoking, may play a substantial role in the development of GCA

    Gene expression profiling reveals differential effects of sodium selenite, selenomethionine, and yeast-derived selenium in the mouse

    Get PDF
    The essential trace mineral selenium is an important determinant of oxidative stress susceptibility, with several studies showing an inverse relationship between selenium intake and cancer. Because different chemical forms of selenium have been reported to have varying bioactivity, there is a need for nutrigenomic studies that can comprehensively assess whether there are divergent effects at the molecular level. We examined the gene expression profiles associated with selenomethionine (SM), sodium selenite (SS), and yeast-derived selenium (YS) in the intestine, gastrocnemius, cerebral cortex, and liver of mice. Weanling mice were fed either a selenium-deficient (SD) diet (<0.01 mg/kg diet) or a diet supplemented with one of three selenium sources (1 mg/kg diet, as either SM, SS or YS) for 100 days. All forms of selenium were equally effective in activating standard measures of selenium status, including tissue selenium levels, expression of genes encoding selenoproteins (Gpx1 and Txnrd2), and increasing GPX1 enzyme activity. However, gene expression profiling revealed that SS and YS were similar (and distinct from SM) in both the expression pattern of individual genes and gene functional categories. Furthermore, only YS significantly reduced the expression of Gadd45b in all four tissues and also reduced GADD45B protein levels in liver. Taken together, these results show that gene expression profiling is a powerful technique capable of elucidating differences in the bioactivity of different forms of selenium

    Determinants of selenium status in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) status in non-deficient subjects is typically assessed by the Se contents of plasma/serum. That pool comprises two functional, specific selenoprotein components and at least one non-functional, non-specific components which respond differently to changes in Se intake. A more informative means of characterizing Se status in non-deficient individuals is needed.</p> <p>Methods</p> <p>Multiple biomarkers of Se status (plasma Se, serum selenoprotein P [SEPP1], plasma glutathione peroxidase activity [GPX3], buccal cell Se, urinary Se) were evaluated in relation to selenoprotein genotypes (GPX1, GPX3, SEPP1, SEP15), dietary Se intake, and parameters of single-carbon metabolism in a cohort of healthy, non-Se-deficient men (n = 106) and women (n = 155).</p> <p>Conclusions</p> <p>Plasma Se concentration was 142.0 ± 23.5 ng/ml, with GPX3 and serum-derived SEPP1 calculated to comprise 20% and 34%, respectively, of that total. The balance, comprised of non-specific components, accounted for virtually all of the interindividual variation in total plasma Se. Buccal cell Se was associated with age and plasma homocysteine (hCys), but not plasma Se. SEPP1 showed a quadratic relationship with body mass index, peaking at BMI 25-30. Urinary Se was greater in women than men, and was associated with metabolic body weight (kg<sup>0.75</sup>), plasma folate, vitamin B<sub>12 </sub>and hCys (negatively). One <it>GPX1 </it>genotype (679T/T) was associated with significantly lower plasma Se levels than other allelic variants. Selenium intake, estimated from food frequency questionnaires, did not predict Se status as indicated by any biomarker. These results show that genotype, methyl-group status and BMI contribute to variation in Se biomarkers in Se-adequate individuals.</p
    corecore