2 research outputs found

    EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling

    Get PDF
    EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.</jats:p

    Eros Mutations: Decreased Nadph Oxidase Function and Chronic Granulomatous Disease

    No full text
    The phagocyte respiratory burst is mediated by the phagocyte NADPH oxidase, a multi-protein subunit complex that facilitates production of reactive oxygen species and which is essential for host defence. Monogenic deficiency of individual subunits leads to chronic granulomatous disease (CGD), which is characterized by an inability to make reactive oxygen species, leading to severe opportunistic infections and auto-inflammation. However, not all cases of CGD are due to mutations in previously identified subunits. We recently showed that Eros, a novel and highly conserved ER-resident transmembrane protein, is essential for the phagocyte respiratory burst in mice because it is required for expression of gp91phox-p22phox heterodimer, which are the membrane bound components of the phagocyte NADPH oxidase. Eros has a human orthologue, CYBC1/EROS. We now show that the function of CYBC1/EROS is conserved in human cells and describe a case of CGD secondary to a homozygous CYBC1/EROS mutation that abolishes EROS protein expression. This work demonstrates the fundamental importance of CYBC1/EROS in human immunity and describes a novel cause of CGD
    corecore