16 research outputs found
AMA PODS Case Competition
Caroline Hoffer ’22Major: Marketing
Ethan Foley ’22Major: Marketing
Erika Markiv ’22Major: Marketing and Economics
Lukas Grover ’22Major: Marketing
Tyler Duff ’22Major: Marketing
Kaitlyn Novarro ’22Major: Marketing
Jacob Lemanowicz ’22Major: Marketing
Faculty Mentor: Professor Rae Caloura, Marketing
The goal of this project was to create an integrated marketing communications plan for the company PODS. PODS wanted to target those looking to relocate for jobs as well as college students. Our team created the “Moving Off the Streets” campaign. During this campaign, a certain percentage of the sales of PODS storage containers would be donated to those fighting to end homelessness
Efficient Solar Thermal Electricity Unlocked: Sodium Heat Pipes in the Solar Furnace
Heat pipes were evaluated as an approach to distribute concentrated solar process heat in a solar receiver application. The ability of a plain 304 stainless steel (304SS) plate to absorb and distribute concentrated solar thermal irradiation was compared to a thermally enhanced board, outfitted with constant conductance sodium heat pies (CCHP TEB). Temperatures on the 304SS and CCHP TEB were measured using thermocouples and corroborated using an infrared camera. The 304SS plate was found to have a temperature range from 423℃ from minimum to peak, compared to a temperature range of 185℃ for the CCHP TEB. The result confirmed the enhanced capacity of the board enhanced by sodium heat pipes to convey heat across the entire plate relative to the plain plate, which had drastic hot and cold spots. Further, the power input of the solar furnace was calculated using a calorimeter and measured heat fluxes. The required solar power to reach a maximum temperature of 719℃ was 0.93 kW for the 304SS, while 1.57 kW was required for the CCHP TEB to reach a comparable maximum temperature. The broader impacts of this technology are two-fold. First, it can enable higher thermal efficiency in solar-electric power plants by facilitating higher solar receiver temperatures. Second, improved efficiency reduces both the land area and cost required to support the U.S. and greater global electricity demand
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
An Exploration of Building Energy Model (BEM) Calibration in New Zealand
This study explored the use of Building Energy Modelling (BEM) and BEM calibration techniques for existing buildings as currently employed in New Zealand Industry.
Research on the use of BEM for existing building energy efficiency retrofits has increased dramatically over the past few decades. However, this use of BEM has been criticised for inaccurate and unbelievable results. These are often the result of not closely matching the building being modelled due to uncertainties around model inputs and modeller assumptions. As a result, researchers have responded by developing techniques to ‘calibrate’ models by comparing the simulated building with the actual building energy use thus providing quality assurance.
However, many of these techniques are difficult, esoteric, convoluted or impractical for industry professionals. This research explored if a simple calibration technique developed at Victoria University of Wellington by Dr. Shaan Cory would meet the needs of industry practitioners. The technique was turned into a usable tool and student trialled to prepare it for industry assessment. Four BEM experts were then interviewed in a series of individual interviews and workshops trialling the use of the technique.
The research concluded that the use of BEM is limited in New Zealand due to a perceived Industry value gap – building owners are not aware of the benefits of modelling whole-building retrofits. This leads to reduced uptake of calibration techniques from industry resulting in a credibility gap, where the modeller themselves may not be confident of their own BEMs. This is due, in part, to a lack of industry quality assurance guidelines, usable calibration tools, and certainty around model inputs. The adoption of the streamlined Cory method would be of significant benefit to practitioners. However, it was identified that it did not solve all issues relating to uncertainty estimation
The design of the Ali CMB Polarization Telescope receiver
International audienceAliCPT-1 is the first CMB degree scale polarimeter to be deployed to the Tibetan plateau at 5,250m asl. AliCPT-1 is a 95/150GHz 72cm aperture, two lens refracting telescope cooled down to 4K. Alumina lenses image the CMB on a 636mm wide focal plane. The modularized focal plane consists of dichroic polarization-sensitive Transition-Edge Sensors (TESes). Each module includes 1,704 optically active TESes fabricated on a 6in Silicon wafer. Each TES array is read out with a microwave multiplexing with a multiplexing factor up to 2,000. Such large factor has allowed to consider 10's of thousands of detectors in a practical way, enabling to design a receiver that can operate up to 19 TES arrays for a total of 32,300 TESes. AliCPT-1 leverages the technological advancements of AdvACT and BICEP-3. The cryostat receiver is currently under integration and testing. Here we present the AliCPT-1 receiver, underlying how the optimized design meets the experimental requirements
The Simons Observatory: Astro2020 Decadal Project Whitepaper
International audienceThe Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form ('SO-Nominal') consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating ("Stage 3") experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4