4 research outputs found

    Monitoring transient elastic energy storage within the rotary motors of single FoF1-ATP synthase by DCO-ALEX FRET

    Full text link
    The enzyme FoF1-ATP synthase provides the 'chemical energy currency' adenosine triphosphate (ATP) for living cells. Catalysis is driven by mechanochemical coupling of subunit rotation within the enzyme with conformational changes in the three ATP binding sites. Proton translocation through the membrane-bound Fo part of ATP synthase powers a 10-step rotary motion of the ring of c subunits. This rotation is transmitted to the gamma and epsilon subunits of the F1 part. Because gamma and epsilon subunits rotate in 120 deg steps, we aim to unravel this symmetry mismatch by real time monitoring subunit rotation using single-molecule Forster resonance energy transfer (FRET). One fluorophore is attached specifically to the F1 motor, another one to the Fo motor of the liposome-reconstituted enzyme. Photophysical artifacts due to spectral fluctuations of the single fluorophores are minimized by a previously developed duty cycle-optimized alternating laser excitation scheme (DCO-ALEX). We report the detection of reversible elastic deformations between the rotor parts of Fo and F1 and estimate the maximum angular displacement during the load-free rotation using Monte Carlo simulationsComment: 14 pages, 7 figure

    36 degree step size of proton-driven c-ring rotation in FoF1-ATP synthase

    Full text link
    Synthesis of the biological "energy currency molecule" adenosine triphosphate ATP is accomplished by FoF1-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the Fo motor powers catalysis in the F1 motor. While F1 uses 120 degree stepping, Fo models predict a step-by-step rotation of c subunits 36 degree at a time, which is here demonstrated by single-molecule fluorescence resonance energy transfer.Comment: 8 pages, 1 figur
    corecore