6 research outputs found

    P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae : Defined domains of P159 bind heparin and promote adherence to eukaryote cells

    Get PDF
    Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, colonizes the respiratory cilia of affected swine causing significant economic losses to swine production worldwide. Heparin is known to inhibit adherence of M. hyopneumoniae to porcine respiratory epithelial cilia. M. hyopneumoniae cells bind heparin but the identity of the heparin-binding proteins is limited. Proteomic analysis of M. hyopneumoniae lysates identified 27 kDa (P27), 110 kDa (P110) and 52 kDa (P52) proteins representing different regions of a 159 kDa (P159) protein derived from mhp494. These cleavage fragments were surface located and present at all growth stages. Following purification of four recombinant proteins spanning P159 (F1(P159), F2(P159), F3(P159) and F4(P159)), only F3(P159) and F4(P159) bound heparin in a dose-dependent manner (K-d values 142.37 +/- 22.01 nM; 75.37 +/- 7.34 nM respectively). Scanning electron microscopic studies showed M. hyopneumoniae bound intimately to porcine kidney epithelial-like cells (PK15 cells) but these processes were inhibited by excess heparin and F4(P159). Similarly, latex beads coated with F2(P159) and F4(P159) adhered to and entered PK15 cells, but heparin, F2(P159) and F4(P159) was inhibitory. These findings indicate that P159 is a post-translationally cleaved, glycosaminoglycan-binding adhesin of M. hyopneumoniae

    Interaction of primary human endometrial cells with Neisseria gonorrhoeae expressing green fluorescent protein

    No full text
    Infection of the endometrium by Neisseria gonorrhoeae is a pivotal stage in the development of pelvic inflammatory disease in women. An ex vivo model of cultures of primary human endometrial cells was developed to study gonococcal-host cell interactions. To facilitate these studies, gonococci were transformed with a hybrid shuttle vector containing the gfp gene from Aequoria victoria, encoding the green fluorescent protein (GFP), to produce intrinsically fluorescent bacteria. The model demonstrated that both pili and Opa proteins were important for both mediating gonococcal interactions with endometrial cells and inducing the secretion of pro-inflammatory cytokines and chemokines. Pil+ gonococci showed high levels of adherence and invasion, regardless of Opa expression, which was associated with increased secretion of IL-8 chemokine and reduced secretion of IL-6 cytokine. Gonococcal challenge also caused increased secretion of TNF-alpha cytokine, but this did not correlate with expression of pili or Opa, suggesting that release of components from non-adherent bacteria may be involved in TNF-alpha induction. Thus, the use of cultured primary endometrial cells, together with gonococci expressing green fluorescent protein, has the potential to extend significantly our knowledge, at the molecular level, of the role of this important human pathogen in the immunobiology of pelvic inflammatory disease
    corecore