4,231 research outputs found

    Gender classification based on gait analysis using ultrawide band radar augmented with artificial intelligence

    Get PDF
    The identification of individuals based on their walking patterns, also known as gait recognition, has garnered considerable interest as a biometric trait. The use of gait patterns for gender classification has emerged as a significant research domain with diverse applications across multiple fields. The present investigation centers on the classification of gender based on gait utilizing data from Ultra-wide band radar. A total of 181 participants were included in the study, and data was gathered using Ultra-wide band radar technology. This study investigates various preprocessing techniques, feature extraction methods, and dimensionality reduction approaches to efficiently process Ultra-wide band radar data. The data quality is improved through the utilization of a two-pulse canceller and discrete wavelet transform. The hybrid feature dataset is generated through the creation of gray-level co-occurrence matrices and subsequent extraction of statistical features. Principal Component Analysis is utilized for dimensionality reduction, and prediction probabilities are incorporated as features for classification optimization. The present study employs k-fold cross-validation to train and assess machine learning classifiers, Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, Multi-Layer Perceptron, K-Nearest Neighbors, and Extra Tree Classifier. The Multilayer Perceptron exhibits superior performance, achieving an accuracy of 0.936. The Support Vector Machine and k-Nearest Neighbors classifiers closely trail behind, both achieving an accuracy of 0.934. This research is of the utmost importance due to its capacity to offer solutions to crucial problems in multiple domains. The findings indicate that the utilization of UWB radar data for gait-based gender classification holds promise in diverse domains, including biometrics, surveillance, and healthcare. The present study makes a valuable contribution to the progress of gender classification systems that rely on gait patterns

    Book Reviews

    Get PDF

    Occupancy Based Household Energy Disaggregation using Ultra Wideband Radar and Electrical Signature Profiles

    Get PDF
    Human behaviour and occupancy accounts for a substantial proportion of variation in the energy efficiency pro le of domestic buildings. Yet while people often claim that they would like to reduce their energy bills, rhetoric frequently fails to match action due to the effort involved in understand- ing and changing deeply engrained energy consumption habits. Here, we present and, through dedicated experiments, test in-house developed soft-ware to remotely identify appliance energy usage within buildings, using energy equipment which could be placed at the electricity meter location. Furthermore, we monitor and compare the occupancy of the location under study through Ultra-Wideband (UWB) radar technology and compare the resulting data with those received from the power monitoring software, via time synchronization. These signals when mapped together can potentially provide both occupancy and speci c appliances power consumption, which could enable energy usage segregation on a yet impossible scale as well as usage attributable to occupancy behaviour. Such knowledge forms the basis for the implementation of automated energy saving actions based on a households unique energy profi le

    Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    Get PDF
    University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods, further complicating demand response scenarios. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced is described and its participation in a demand response event during 2008 is detailed. Second, a set of demand response strategies were pre-programmed into the campus control system to enable semi-automated demand response during a 2009 event, which is also evaluated. Finally, demand savings results are applied to the utility’s DR incentives structure to calculate the financial savings under various DR programs and tariffs

    Book Reviews

    Get PDF

    Automatic User Preferences Selection of Smart Hearing Aid Using BioAid

    Get PDF
    Noisy environments, changes and variations in the volume of speech, and non-face-to-face conversations impair the user experience with hearing aids. Generally, a hearing aid amplifies sounds so that a hearing-impaired person can listen, converse, and actively engage in daily activities. Presently, there are some sophisticated hearing aid algorithms available that operate on numerous frequency bands to not only amplify but also provide tuning and noise filtering to minimize background distractions. One of those is the BioAid assistive hearing system, which is an open-source, freely available downloadable app with twenty-four tuning settings. Critically, with this device, a person suffering with hearing loss must manually alter the settings/tuning of their hearing device when their surroundings and scene changes in order to attain a comfortable level of hearing. However, this manual switching among multiple tuning settings is inconvenient and cumbersome since the user is forced to switch to the state that best matches the scene every time the auditory environment changes. The goal of this study is to eliminate this manual switching and automate the BioAid with a scene classification algorithm so that the system automatically identifies the user-selected preferences based on adequate training. The aim of acoustic scene classification is to recognize the audio signature of one of the predefined scene classes that best represent the environment in which it was recorded. BioAid, an open-source biological inspired hearing aid algorithm, is used after conversion to Python. The proposed method consists of two main parts: classification of auditory scenes and selection of hearing aid tuning settings based on user experiences. The DCASE2017 dataset is utilized for scene classification. Among the many classifiers that were trained and tested, random forests have the highest accuracy of 99.7%. In the second part, clean speech audios from the LJ speech dataset are combined with scenes, and the user is asked to listen to the resulting audios and adjust the presets and subsets. A CSV file stores the selection of presets and subsets at which the user can hear clearly against the scenes. Various classifiers are trained on the dataset of user preferences. After training, clean speech audio was convolved with the scene and fed as input to the scene classifier that predicts the scene. The predicted scene was then fed as input to the preset classifier that predicts the user’s choice for preset and subset. The BioAid is automatically tuned to the predicted selection. The accuracy of random forest in the prediction of presets and subsets was 100%. This proposed approach has great potential to eliminate the tedious manual switching of hearing assistive device parameters by allowing hearing-impaired individuals to actively participate in daily life by automatically adjusting hearing aid settings based on the acoustic scen

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Non-Invasive Driver Drowsiness Detection System.

    Get PDF
    Drowsiness when in command of a vehicle leads to a decline in cognitive performance that affects driver behavior, potentially causing accidents. Drowsiness-related road accidents lead to severe trauma, economic consequences, impact on others, physical injury and/or even death. Real-time and accurate driver drowsiness detection and warnings systems are necessary schemes to reduce tiredness-related driving accident rates. The research presented here aims at the classification of drowsy and non-drowsy driver states based on respiration rate detection by non-invasive, non-touch, impulsive radio ultra-wideband (IR-UWB) radar. Chest movements of 40 subjects were acquired for 5 m using a lab-placed IR-UWB radar system, and respiration per minute was extracted from the resulting signals. A structured dataset was obtained comprising respiration per minute, age and label (drowsy/non-drowsy). Different machine learning models, namely, Support Vector Machine, Decision Tree, Logistic regression, Gradient Boosting Machine, Extra Tree Classifier and Multilayer Perceptron were trained on the dataset, amongst which the Support Vector Machine shows the best accuracy of 87%. This research provides a ground truth for verification and assessment of UWB to be used effectively for driver drowsiness detection based on respiration

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Automated Peripheral Neuropathy Assessment using Optical Imaging and Foot Anthropometry

    Get PDF
    A large proportion of individuals who live with type-2 diabetes suffer from plantar sensory neuropathy. Regular testing and assessment for the condition is required to avoid ulceration or other damage to patient’s feet. Currently accepted practice involves a trained clinician testing a patient’s feet manually with a hand-held nylon monofilament probe. The procedure is time-consuming, labor-intensive, requires special training, is prone to error and repeatability is difficult. With the vast increase in type-2 diabetes, the number of plantar sensory neuropathy sufferers has already grown to such an extent as to make a traditional manual test problematic. This paper presents the first investigation of a novel approach to automatically identify the pressure points on a given patient’s foot for the examination of sensory neuropathy via optical image processing incorporating plantar anthropometry. The method automatically selects suitable test points on the plantar surface that correspond to those repeatedly chosen by a trained podiatrist. The proposed system automatically identifies the specific pressure points at different locations, namely the toe (hallux), metatarsal heads and heel (Calcaneum) areas. The approach is generic and has shown 100% reliability on the available database used. The database consists of Chinese, Asian, African and Caucasian foot images
    • …
    corecore