5,633 research outputs found
Development and validation of an advanced low-order panel method
A low-order potential-flow panel code, PMARC, for modeling complex three-dimensional geometries, is currently being developed at NASA Ames Research Center. The PMARC code was derived from a code named VSAERO that was developed for Ames Research Center by Analytical Methods, Inc. In addition to modeling potential flow over three-dimensional geometries, the present version of PMARC includes several advanced features such as an internal flow model, a simple jet wake model, and a time-stepping wake model. Data management within the code was optimized by the use of adjustable size arrays for rapidly changing the size capability of the code, reorganization of the output file and adopting a new plot file format. Preliminary versions of a geometry preprocessor and a geometry/aerodynamic data postprocessor are also available for use with PMARC. Several test cases are discussed to highlight the capabilities of the internal flow model, the jet wake model, and the time-stepping wake model
Learning Arbitrary Statistical Mixtures of Discrete Distributions
We study the problem of learning from unlabeled samples very general
statistical mixture models on large finite sets. Specifically, the model to be
learned, , is a probability distribution over probability
distributions , where each such is a probability distribution over . When we sample from , we do not observe
directly, but only indirectly and in very noisy fashion, by sampling from
repeatedly, independently times from the distribution . The problem is
to infer to high accuracy in transportation (earthmover) distance.
We give the first efficient algorithms for learning this mixture model
without making any restricting assumptions on the structure of the distribution
. We bound the quality of the solution as a function of the size of
the samples and the number of samples used. Our model and results have
applications to a variety of unsupervised learning scenarios, including
learning topic models and collaborative filtering.Comment: 23 pages. Preliminary version in the Proceeding of the 47th ACM
Symposium on the Theory of Computing (STOC15
Fundamental noise limitations to supercontinuum generation in microstructure fiber
Broadband noise on supercontinuum spectra generated in microstructure fiber
is shown to lead to amplitude fluctuations as large as 50 % for certain input
laser pulse parameters. We study this noise using both experimental
measurements and numerical simulations with a generalized stochastic nonlinear
Schroedinger equation, finding good quantitative agreement over a range of
input pulse energies and chirp values. This noise is shown to arise from
nonlinear amplification of two quantum noise inputs: the input pulse shot noise
and the spontaneous Raman scattering down the fiber.Comment: 16 pages with 6 figure
Potential flow theory and operation guide for the panel code PMARC
The theoretical basis for PMARC, a low-order potential-flow panel code for modeling complex three-dimensional geometries, is outlined. Several of the advanced features currently included in the code, such as internal flow modeling, a simple jet model, and a time-stepping wake model, are discussed in some detail. The code is written using adjustable size arrays so that it can be easily redimensioned for the size problem being solved and the computer hardware being used. An overview of the program input is presented, with a detailed description of the input available in the appendices. Finally, PMARC results for a generic wing/body configuration are compared with experimental data to demonstrate the accuracy of the code. The input file for this test case is given in the appendices
A model based on clinical parameters to identify myocardial late gadolinium enhancement by magnetic resonance in patients with aortic stenosis: An observational study
Objective With increasing age, the prevalence of aortic stenosis grows exponentially, increasing left heart pressures and potentially leading to myocardial hypertrophy, myocardial fibrosis and adverse outcomes. To identify patients who are at greatest risk, an outpatient model for risk stratification would be of value to better direct patient imaging, frequency of monitoring and expeditious management of aortic stenosis with possible earlier surgical intervention. In this study, a relatively simple model is proposed to identify myocardial fibrosis in patients with a diagnosis of moderate or severe aortic stenosis. Design Patients with moderate to severe aortic stenosis were enrolled into the study; patient characteristics, blood work, medications as well as transthoracic echocardiography and cardiovascular magnetic resonance were used to determine potential identifiers of myocardial fibrosis. Setting The Royal Brompton Hospital, London, UK Participants One hundred and thirteen patients in derivation cohort and 26 patients in validation cohort. Main outcome measures Identification of myocardial fibrosis. Results Three blood biomarkers (serum platelets, serum urea, N-terminal pro-B-type natriuretic peptide) and left ventricular ejection fraction were shown to be capable of identifying myocardial fibrosis. The model was validated in a separate cohort of 26 patients. Conclusions Although further external validation of the model is necessary prior to its use in clinical practice, the proposed clinical model may direct patient care with respect to earlier magnetic resonance imagining, frequency of monitoring and may help in risk stratification for surgical intervention for myocardial fibrosis in patients with aortic stenosis
Fast and precise touch-based text entry for head-mounted augmented reality with variable occlusion
We present the VISAR keyboard: An augmented reality (AR) head-mounted display (HMD) system that supports text entry via a virtualised input surface. Users select keys on the virtual keyboard by imitating the process of single-hand typing on a physical touchscreen display. Our system uses a statistical decoder to infer users’ intended text and to provide error-tolerant predictions. There is also a high-precision fall-back mechanism to support users in indicating which keys should be unmodified by the auto-correction process. A unique advantage of leveraging the well-established touch input paradigm is that our system enables text entry with minimal visual clutter on the see-through display, thus preserving the user’s field-of-view. We iteratively designed and evaluated our system and show that the final iteration of the system supports a mean entry rate of 17.75wpm with a mean character error rate less than 1%. This performance represents a 19.6% improvement relative to the state-of-the-art baseline investigated: A gaze-then-gesture text entry technique derived from the system keyboard on the Microsoft HoloLens. Finally, we validate that the system is effective in supporting text entry in a fully mobile usage scenario likely to be encountered in industrial applications of AR HMDs.Per Ola Kristensson was supported in part by a Google Faculty research award and EPSRC grants EP/N010558/1 and EP/N014278/1. Keith Vertanen was supported in part by a Google Faculty research award. John Dudley was supported by the Trimble Fund
On the modulation instability development in optical fiber systems
Extensive numerical simulations were performed to investigate all stages of
modulation instability development from the initial pulse of pico-second
duration in photonic crystal fiber: quasi-solitons and dispersive waves
formation, their interaction stage and the further propagation. Comparison
between 4 different NLS-like systems was made: the classical NLS equation, NLS
system plus higher dispersion terms, NLS plus higher dispersion and
self-steepening and also fully generalized NLS equation with Raman scattering
taken into account. For the latter case a mechanism of energy transfer from
smaller quasi-solitons to the bigger ones is proposed to explain the dramatical
increase of rogue waves appearance frequency in comparison to the systems when
the Raman scattering is not taken into account.Comment: 9 pages, 54 figure
- …