884 research outputs found
Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization
It is well-known that Scherk-Schwarz compactifications in string theory have
a tachyon in the closed string spectrum appearing for a critical value of a
compact radius. The tachyon can be removed by an appropriate orientifold
projection in type II strings, giving rise to tachyon-free compactifications.
We present explicit examples of this type in various dimensions, including six
and four-dimensional chiral examples, with softly broken supersymmetry in the
closed sector and non-BPS configurations in the open sector. These vacua are
interesting frameworks for studying various cosmological issues. We discuss
four-dimensional cosmological solutions and moduli stabilization triggered by
nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference
Gauge vs. Gravity mediation in models with anomalous U(1)'s
In an attempt to implement gauge mediation in string theory, we study string
effective supergravity models of supersymmetry breaking, containing anomalous
gauge factors. We discuss subtleties related to gauge invariance and the
stabilization of the Green-Schwarz moduli, which set non-trivial constraints on
the transmission of supersymmetry breaking to MSSM via gauge interactions.
Given those constraints, it is difficult to obtain the dominance of gauge
mediation over gravity mediation. Furthermore, generically the gauge
contributions to soft terms contain additional non-standard terms coming from
D-term contributions. Motivated by this, we study the phenomenology of recently
proposed hybrid models, where gravity and gauge mediations compete at the GUT
scale, and show that such a scenario can respect WMAP constraints and would be
easily testable at LHC.Comment: 40 pages, 5 figure
Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation
We study the influence of anomalous U(1) symmetries and their associated
D-terms on the vacuum structure of global field theories once they are coupled
to N=1 supergravity and in the context of string compactifications with moduli
stabilisation. In particular, we focus on a IIB string motivated construction
of the ISS scenario and examine the influence of one additional U(1) symmetry
on the vacuum structure. We point out that in the simplest one-Kahler modulus
compactification, the original ISS vacuum gets generically destabilised by a
runaway behaviour of the potential in the modulus direction. In more general
compactifications with several Kahler moduli, we find a novel realisation of
the LARGE volume scenario with D-term uplifting to de Sitter space and both
D-term and F-term supersymmetry breaking. The structure of soft supersymmetry
breaking terms is determined in the preferred scenario where the standard model
cycle is not stabilised non-perturbatively and found to be flavour universal.
Our scenario also provides a purely supersymmetric realisation of Kahler moduli
(blow-up and fibre) inflation, with similar observational properties as the
original proposals but without the need to include an extra (non-SUSY)
uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction
F-term uplifting via consistent D-terms
The issue of fine-tuning necessary to achieve satisfactory degree of
hierarchy between moduli masses, the gravitino mass and the scale of the
cosmological constant has been revisited in the context of supergravities with
consistent D-terms. We have studied (extended) racetrack models where
supersymmetry breaking and moduli stabilisation cannot be separated from each
other. We show that even in such cases the realistic hierarchy can be achieved
on the expense of a single fine-tuning. The presence of two condensates changes
the role of the constant term in the superpotential, W_0, and solutions with
small vacuum energy and large gravitino mass can be found even for very small
values of W_0. Models where D-terms are allowed to vanish at finite vevs of
moduli fields - denoted `cancellable' D-terms - and the ones where D-terms may
vanish only at infinite vevs of some moduli - denoted `non-cancellable' -
differ markedly in their properties. It turns out that the tuning with respect
to the Planck scale required in the case of cancellable D-terms is much weaker
than in the case of non-cancellable ones. We have shown that, against
intuition, a vanishing D-term can trigger F-term uplifting of the vacuum energy
due to the stringent constraint it imposes on vacuum expectation values of
charged fields. Finally we note that our models only rely on two dimensionful
parameters: M_P and W_0.Comment: 10 pages, 2 figures, plain Latex, references adde
Moduli stabilization with Fayet-Iliopoulos uplift
In the recent years, phenomenological models of moduli stabilization were
proposed, where the dynamics of the stabilization is essentially
supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is
responsible for the "uplift" of the cosmological constant to zero. We
investigate the case where the uplift is provided by a Fayet-Iliopoulos sector.
We find that in this case the modulus contribution to supersymmetry breaking is
larger than in the previous models. A first consequence of this class of
constructions is for gauginos, which are heavier compared to previous models.
In some of our explicit examples, due to a non-standard gauge-mediation type
negative contribution to scalars masses, the whole superpartner spectrum can be
efficiently compressed at low-energy. This provides an original phenomenology
testable at the LHC, in particular sleptons are generically heavier than the
squarks.Comment: 29 pages, 2 figure
Volume modulus inflation and a low scale of SUSY breaking
The relation between the Hubble constant and the scale of supersymmetry
breaking is investigated in models of inflation dominated by a string modulus.
Usually in this kind of models the gravitino mass is of the same order of
magnitude as the Hubble constant which is not desirable from the
phenomenological point of view. It is shown that slow-roll saddle point
inflation may be compatible with a low scale of supersymmetry breaking only if
some corrections to the lowest order Kahler potential are taken into account.
However, choosing an appropriate Kahler potential is not enough. There are also
conditions for the superpotential, and e.g. the popular racetrack
superpotential turns out to be not suitable. A model is proposed in which
slow-roll inflation and a light gravitino are compatible. It is based on a
superpotential with a triple gaugino condensation and the Kahler potential with
the leading string corrections. The problem of fine tuning and experimental
constraints are discussed for that model.Comment: 28 pages, 8 figures, comments and references added, minor change in
notation, version to be publishe
Lifetime of Stringy de Sitter Vacua
In this note we perform a synopsis of the life-times from vacuum decay of
several de Sitter vacuum constructions in string/M-theory which have a single
dS minimum arising from lifting a pre-existing AdS extremum and no other local
minima existent after lifting. For these vacua the decay proceeds via a
Coleman--De Luccia instanton towards the universal Minkowski minimum at
infinite volume. This can be calculated using the thin--wall approximation,
provided the cosmological constant of the local dS minimum is tuned
sufficiently small. We compare the estimates for the different model classes
and find them all stable in the sense of exponentially long life times as long
as they have a very small cosmological constant and a scale of supersymmetry
breaking > TeV.Comment: 1+16 pages, 2 figures, LaTeX, uses JHEP3 class, v2: references added,
inclusion of an additional subclass of de Sitter vacu
Finite temperature behaviour of the ISS-uplifted KKLT model
We study the static phase structure of the ISS-KKLT model for moduli
stabilisation and uplifting to a zero cosmological constant. Since the
supersymmetry breaking sector and the moduli sector are only gravitationally
coupled, we expect negligible quantum effects of the modulus upon the ISS
sector, and the other way around. Under this assumption, we show that the ISS
fields end up in the metastable vacua. The reason is not only that it is
thermally favoured (second order phase transition) compared to the phase
transition towards the supersymmetric vacua, but rather that the metastable
vacua form before the supersymmetric ones. This nice feature is exclusively due
to the presence of the KKLT sector. We also show that supergravity effects are
negligible around the origin of the field space. Finally, we turn to the
modulus sector and show that there is no destabilisation effect coming from the
ISS sector.Comment: 23 pages, 3 figures, mistake corrected, one plot updated, physical
conclusions unchange
Moduli stabilization and uplifting with dynamically generated F-terms
We use the F-term dynamical supersymmetry breaking models with metastable
vacua in order to uplift the vacuum energy in the KKLT moduli stabilization
scenario. The main advantage compared to earlier proposals is the manifest
supersymmetric treatment and the natural coexistence of a TeV gravitino mass
with a zero cosmological constant. We argue that it is generically difficult to
avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the
metastable vacuum with zero vacuum energy towards them can be very suppressed.
We briefly comment on the properties of the induced soft terms in the
observable sector.Comment: 18 pages, no figures Comments and one reference adde
- …