884 research outputs found

    Non-tachyonic Scherk-Schwarz compactifications, cosmology and moduli stabilization

    Full text link
    It is well-known that Scherk-Schwarz compactifications in string theory have a tachyon in the closed string spectrum appearing for a critical value of a compact radius. The tachyon can be removed by an appropriate orientifold projection in type II strings, giving rise to tachyon-free compactifications. We present explicit examples of this type in various dimensions, including six and four-dimensional chiral examples, with softly broken supersymmetry in the closed sector and non-BPS configurations in the open sector. These vacua are interesting frameworks for studying various cosmological issues. We discuss four-dimensional cosmological solutions and moduli stabilization triggered by nonperturbative effects like gaugino condensation on D-branes and fluxes.Comment: 36 pages, LaTeX; added reference

    Gauge vs. Gravity mediation in models with anomalous U(1)'s

    Get PDF
    In an attempt to implement gauge mediation in string theory, we study string effective supergravity models of supersymmetry breaking, containing anomalous gauge factors. We discuss subtleties related to gauge invariance and the stabilization of the Green-Schwarz moduli, which set non-trivial constraints on the transmission of supersymmetry breaking to MSSM via gauge interactions. Given those constraints, it is difficult to obtain the dominance of gauge mediation over gravity mediation. Furthermore, generically the gauge contributions to soft terms contain additional non-standard terms coming from D-term contributions. Motivated by this, we study the phenomenology of recently proposed hybrid models, where gravity and gauge mediations compete at the GUT scale, and show that such a scenario can respect WMAP constraints and would be easily testable at LHC.Comment: 40 pages, 5 figure

    Metastable SUSY Breaking, de Sitter Moduli Stabilisation and K\"ahler Moduli Inflation

    Full text link
    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kahler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.Comment: 38 pages, 8 figures. v2: references added, minor correction

    F-term uplifting via consistent D-terms

    Get PDF
    The issue of fine-tuning necessary to achieve satisfactory degree of hierarchy between moduli masses, the gravitino mass and the scale of the cosmological constant has been revisited in the context of supergravities with consistent D-terms. We have studied (extended) racetrack models where supersymmetry breaking and moduli stabilisation cannot be separated from each other. We show that even in such cases the realistic hierarchy can be achieved on the expense of a single fine-tuning. The presence of two condensates changes the role of the constant term in the superpotential, W_0, and solutions with small vacuum energy and large gravitino mass can be found even for very small values of W_0. Models where D-terms are allowed to vanish at finite vevs of moduli fields - denoted `cancellable' D-terms - and the ones where D-terms may vanish only at infinite vevs of some moduli - denoted `non-cancellable' - differ markedly in their properties. It turns out that the tuning with respect to the Planck scale required in the case of cancellable D-terms is much weaker than in the case of non-cancellable ones. We have shown that, against intuition, a vanishing D-term can trigger F-term uplifting of the vacuum energy due to the stringent constraint it imposes on vacuum expectation values of charged fields. Finally we note that our models only rely on two dimensionful parameters: M_P and W_0.Comment: 10 pages, 2 figures, plain Latex, references adde

    Moduli stabilization with Fayet-Iliopoulos uplift

    Get PDF
    In the recent years, phenomenological models of moduli stabilization were proposed, where the dynamics of the stabilization is essentially supersymmetric, whereas an O'Rafearthaigh supersymmetry breaking sector is responsible for the "uplift" of the cosmological constant to zero. We investigate the case where the uplift is provided by a Fayet-Iliopoulos sector. We find that in this case the modulus contribution to supersymmetry breaking is larger than in the previous models. A first consequence of this class of constructions is for gauginos, which are heavier compared to previous models. In some of our explicit examples, due to a non-standard gauge-mediation type negative contribution to scalars masses, the whole superpartner spectrum can be efficiently compressed at low-energy. This provides an original phenomenology testable at the LHC, in particular sleptons are generically heavier than the squarks.Comment: 29 pages, 2 figure

    Volume modulus inflation and a low scale of SUSY breaking

    Full text link
    The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.Comment: 28 pages, 8 figures, comments and references added, minor change in notation, version to be publishe

    Lifetime of Stringy de Sitter Vacua

    Full text link
    In this note we perform a synopsis of the life-times from vacuum decay of several de Sitter vacuum constructions in string/M-theory which have a single dS minimum arising from lifting a pre-existing AdS extremum and no other local minima existent after lifting. For these vacua the decay proceeds via a Coleman--De Luccia instanton towards the universal Minkowski minimum at infinite volume. This can be calculated using the thin--wall approximation, provided the cosmological constant of the local dS minimum is tuned sufficiently small. We compare the estimates for the different model classes and find them all stable in the sense of exponentially long life times as long as they have a very small cosmological constant and a scale of supersymmetry breaking > TeV.Comment: 1+16 pages, 2 figures, LaTeX, uses JHEP3 class, v2: references added, inclusion of an additional subclass of de Sitter vacu

    Finite temperature behaviour of the ISS-uplifted KKLT model

    Get PDF
    We study the static phase structure of the ISS-KKLT model for moduli stabilisation and uplifting to a zero cosmological constant. Since the supersymmetry breaking sector and the moduli sector are only gravitationally coupled, we expect negligible quantum effects of the modulus upon the ISS sector, and the other way around. Under this assumption, we show that the ISS fields end up in the metastable vacua. The reason is not only that it is thermally favoured (second order phase transition) compared to the phase transition towards the supersymmetric vacua, but rather that the metastable vacua form before the supersymmetric ones. This nice feature is exclusively due to the presence of the KKLT sector. We also show that supergravity effects are negligible around the origin of the field space. Finally, we turn to the modulus sector and show that there is no destabilisation effect coming from the ISS sector.Comment: 23 pages, 3 figures, mistake corrected, one plot updated, physical conclusions unchange

    Moduli stabilization and uplifting with dynamically generated F-terms

    Get PDF
    We use the F-term dynamical supersymmetry breaking models with metastable vacua in order to uplift the vacuum energy in the KKLT moduli stabilization scenario. The main advantage compared to earlier proposals is the manifest supersymmetric treatment and the natural coexistence of a TeV gravitino mass with a zero cosmological constant. We argue that it is generically difficult to avoid anti de-Sitter supersymmetric minima, however the tunneling rate from the metastable vacuum with zero vacuum energy towards them can be very suppressed. We briefly comment on the properties of the induced soft terms in the observable sector.Comment: 18 pages, no figures Comments and one reference adde
    • …
    corecore