9 research outputs found

    SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    Get PDF
    Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC1), and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14) at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure

    High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    No full text
    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection

    Nuclear initiated NF-κB signaling: NEMO and ATM take center stage

    No full text
    A large body of literature describes elaborate NF-κB signaling networks induced by inflammatory and immune signals. Decades of research has revealed that transcriptionally functional NF-κB dimers are activated by two major pathways, canonical and non-canonical. Both pathways involve the release of NF-κB dimers from inactive cytoplasmic complexes to cause their nuclear translocation to modulate gene expression programs and biological responses. NF-κB is also responsive to genotoxic agents; however, signal communication networks that are initiated in the nucleus following DNA damage induction are less defined. Evidence in the literature supports the presence of such signaling pathways induced by multiple distinct genotoxic agents, resulting in the activation of cytoplasmic IKK complex. An example is a pathway that involves the DNA damage-responsive kinase ataxia telangiectasia mutated (ATM) and a series of post-translational modifications of NF-κB essential modulator (NEMO) in the nucleus of a genotoxin-exposed cell. Recent evidence also suggests that this nuclear-initiated NF-κB signaling pathway plays significant physiological and pathological roles, particularly in lymphocyte development and human cancer progression. This review will summarize these new developments, while identifying significant unanswered questions and providing new hypotheses that may be addressed in future studies
    corecore