223 research outputs found
Phylloquinone (vitamin K 1 ) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4âdihydroxyâ2ânaphthoylâcoa
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/1/TPJ_4972_sm_FigS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/2/TPJ_4972_sm_TableS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/3/TPJ_4972_sm_FigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/4/TPJ_4972_sm_TableS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/5/TPJ_4972_sm_FigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/6/j.1365-313X.2012.04972.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/7/TPJ_4972_sm_FigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/8/TPJ_4972_sm_TableS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/9/TPJ_4972_sm_FigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/10/TPJ_4972_sm_TableS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/92396/11/TPJ_4972_sm_FigS4.pd
Increases in Waist Circumference and Weight As Predictors of Type 2 Diabetes in Individuals With Impaired Fasting Glucose: Influence of Baseline BMI: Data from the DESIR study
OBJECTIVE
To evaluate in impaired fasting glucose (IFG) the relative importance of increases in waist circumference and weight on progression to type 2 diabetes.
RESEARCH DESIGN AND METHODS
The 9-year incidence of diabetes was studied in 979 men and women with baseline IFG, from the Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) cohort.
RESULTS
Increases in both waist circumference and weight were significantly associated with diabetes incidence. Standardized odds ratios (95% CI) were 1.79 (1.45â2.21) and 1.86 (1.51â2.30), respectively, after controlling for baseline risk factors. The impact of waist circumference increase was greater for BMI <25 kg/m2 (2.40 [1.63â3.52]) than for BMI â„25 kg/m2 (1.66 [1.28â2.16]) and persisted after adjusting for concurrent changes in either insulinemia or the homeostasis model assessment of insulin resistance index. Weight change had a similar impact in both BMI groups.
CONCLUSIONS
In individuals with IFG, it is important to monitor and prevent increases in waist circumference, in particular for those with BMI <25 kg/m2
Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity
AIMS: Obesity is a primary contributor to acquired insulin resistance leading to the development of type 2 diabetes and cardiovascular alterations. The carnitine derivate, propionyl-L-carnitine (PLC), plays a key role in energy control. Our aim was to evaluate metabolic and cardiovascular effects of PLC in diet-induced obese mice.
METHODS: C57BL/6 mice were fed a high-fat diet for 9 weeks and then divided into two groups, receiving either free- (vehicle-HF) or PLC-supplemented water (200 mg/kg/day) during 4 additional weeks. Standard diet-fed animals were used as lean controls (vehicle-ST). Body weight and food intake were monitored. Glucose and insulin tolerance tests were assessed, as well as the HOMA(IR), the serum lipid profile, the hepatic and muscular mitochondrial activity and the tissue nitric oxide (NO) liberation. Systolic blood pressure, cardiac and endothelial functions were also evaluated.
RESULTS: Vehicle-HF displayed a greater increase of body weight compared to vehicle-ST that was completely reversed by PLC treatment without affecting food intake. PLC improved the insulin-resistant state and reversed the increased total cholesterol but not the increase in free fatty acid, triglyceride and HDL/LDL ratio induced by high-fat diet. Vehicle-HF exhibited a reduced cardiac output/body weight ratio, endothelial dysfunction and tissue decrease of NO production, all of them being improved by PLC treatment. Finally, the decrease of hepatic mitochondrial activity by high-fat diet was reversed by PLC.
CONCLUSIONS: Oral administration of PLC improves the insulin-resistant state developed by obese animals and decreases the cardiovascular risk associated to this metabolic alteration probably via correction of mitochondrial function
Lipodystrophy-Linked LMNA p.R482W Mutation Induces Clinical Early Atherosclerosis and In Vitro Endothelial Dysfunction
ObjectiveâSome mutations in LMNA, encoding A-type lamins, are responsible for Dunnigan-type-familial partial lipodystrophy (FPLD2), with altered fat distribution and metabolism. The high prevalence of early and severe cardiovascular outcomes in these patients suggests that, in addition to metabolic risk factors, FPLD2-associated LMNA mutations could have a direct role on the vascular wall cells.
Approach and ResultsâWe analyzed the cardiovascular phenotype of 19 FPLD2 patients aged >30 years with LMNA p.R482 heterozygous substitutions, and the effects of p.R482W-prelamin-A overexpression in human coronary artery endothelial cells. In 68% of FPLD2 patients, early atherosclerosis was attested by clinical cardiovascular events, occurring before the age of 45 in most cases. In transduced endothelial cells, exogenous wild-type-prelamin-A was correctly processed and localized, whereas p.R482W-prelamin-A accumulated abnormally at the nuclear envelope. Patientsâ fibroblasts also showed a predominant nuclear envelope distribution with a decreased rate of prelamin-A maturation. Only p.R482W-prelamin-A induced endothelial dysfunction, with decreased production of NO, increased endothelial adhesion of peripheral blood mononuclear cells, and cellular senescence. p.R482W-prelamin-A also induced oxidative stress, DNA damages, and inflammation. These alterations were prevented by treatment of endothelial cells with pravastatin, which inhibits prelamin-A farnesylation, or with antioxidants. In addition, pravastatin allowed the correct relocalization of p.R482W-prelamin-A within the endothelial cell nucleus. These data suggest that farnesylated p.R482W-prelamin-A accumulation at the nuclear envelope is a toxic event, leading to cellular oxidative stress and endothelial dysfunction.
ConclusionsâLMNA p.R482 mutations, responsible for FPLD2, exert a direct proatherogenic effect in endothelial cells, which could contribute to patientsâ early atherosclerosis
Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation
Mitochondria have been shown to be impaired in insulin resistance-related diseases but have not been extensively studied during the first steps of adipose cell development. This study was designed to determine the sequence of changes of the mitochondrial network and function during the first days of adipogenesis. 3T3-L1 preadipocytes were differentiated into adipocytes without using glitazone compounds. At days 0, 3, 6, 9, and 12, mitochondrial network imaging, mitochondrial oxygen consumption, membrane potential, and oxidative phosphorylation efficiency were assessed in permeabilized cells. Gene and protein expressions related to fatty acid metabolism and mitochondrial network were also determined. Compared to preadipocytes (day 0), new adipocytes (days 6 and 9) displayed profound changes of their mitochondrial network that underwent fragmentation and redistribution around lipid droplets. Drp1 and mitofusin 2 displayed a progressive increase in their gene expression and protein content during the first 9 days of differentiation. In parallel with the mitochondrial network redistribution, mitochondria switched to uncoupled respiration with a tendency towards decreased membrane potential, with no variation of mtTFA and NRF1 gene expression. The expression of PGC1α and NRF2 genes and genes involved in lipid oxidation (UCP2, CD36, and CPT1) was increased. Reactive oxygen species (ROS) production displayed a nadir at day 6 with a concomitant increase in antioxidant enzyme gene expression. This 3T3-L1-based in vitro model of adipogenesis showed that mitochondria adapted to the increased number of lipid droplets by network redistribution and uncoupling respiration. The timing and regulation of lipid oxidation-associated ROS production appeared to play an important role in these changes
The Type and the Position of HNF1A Mutation Modulate Age at Diagnosis of Diabetes in Patients with Maturity-Onset Diabetes of the Young (MODY)-3
OBJECTIVEâThe clinical expression of maturity-onset diabetes of the young (MODY)-3 is highly variable. This may be due to environmental and/or genetic factors, including molecular characteristics of the hepatocyte nuclear factor 1-α (HNF1A) gene mutation.
RESEARCH DESIGN AND METHODSâWe analyzed the mutations identified in 356 unrelated MODY3 patients, including 118 novel mutations, and searched for correlations between the genotype and age at diagnosis of diabetes.
RESULTSâMissense mutations prevailed in the dimerization and DNA-binding domains (74%), while truncating mutations were predominant in the transactivation domain (62%). The majority (83%) of the mutations were located in exons 1- 6, thus affecting the three HNF1A isoforms. Age at diagnosis of diabetes was lower in patients with truncating mutations than in those with missense mutations (18 vs. 22 years, P = 0.005). Missense mutations affecting the dimerization/DNA-binding domains were associated with a lower age at diagnosis than those affecting the transactivation domain (20 vs. 30 years, P = 10â4). Patients with missense mutations affecting the three isoforms were younger at diagnosis than those with missense mutations involving one or two isoforms (P = 0.03).
CONCLUSIONSâThese data show that part of the variability of the clinical expression in MODY3 patients may be explained by the type and the location of HNF1A mutations. These findings should be considered in studies for the search of additional modifier genetic factors
Metagenomic analysis of planktonic riverine microbial consortia using nanopore sequencing reveals insight into river microbe taxonomy and function
Background Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad âaquascapeâ scale, and few if any have applied the newest nanopore technology. Results We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5â1.0 â
106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. Conclusions Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space
- âŠ