37 research outputs found

    Proof of finite surface code threshold for matching

    Full text link
    The field of quantum computation currently lacks a formal proof of experimental feasibility. Qubits are fragile and sophisticated quantum error correction is required to achieve reliable quantum computation. The surface code is a promising quantum error correction code, requiring only a physically reasonable 2-D lattice of qubits with nearest neighbor interactions. However, existing proofs that reliable quantum computation is possible using this code assume the ability to measure four-body operators and, despite making this difficult to realize assumption, require that the error rate of these operator measurements is less than 10^-9, an unphysically low target. High error rates have been proved tolerable only when assuming tunable interactions of strength and error rate independent of distance, which is also unphysical. In this work, given a 2-D lattice of qubits with only nearest neighbor two-qubit gates, and single-qubit measurement, initialization, and unitary gates, all of which have error rate p, we prove that arbitrarily reliable quantum computation is possible provided p<7.4x10^-4, a target that many experiments have already achieved. This closes a long-standing open problem, formally proving the experimental feasibility of quantum computation under physically reasonable assumptions.Comment: 5 pages, 4 figures, published versio

    Foliated quantum error-correcting codes

    Get PDF
    We show how to construct a large class of quantum error-correcting codes, known as Calderbank-Steane-Shor codes, from highly entangled cluster states. This becomes a primitive in a protocol that foliates a series of such cluster states into a much larger cluster state, implementing foliated quantum error correction. We exemplify this construction with several familiar quantum error-correction codes and propose a generic method for decoding foliated codes. We numerically evaluate the error-correction performance of a family of finite-rate Calderbank-Steane-Shor codes known as turbo codes, finding that they perform well over moderate depth foliations. Foliated codes have applications for quantum repeaters and fault-tolerant measurement-based quantum computation

    Topological code Autotune

    Full text link
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool Autotune capable of performing this optimization automatically, and give two highly distinct examples of its use and extreme outperformance of unoptimized TQEC. Autotune is designed to facilitate the precise study of real hardware running TQEC with every quantum gate having a realistic, physics-based error model.Comment: 13 pages, 17 figures, version accepted for publicatio

    Fast fault-tolerant decoder for qubit and qudit surface codes

    Get PDF
    The surface code is one of the most promising candidates for combating errors in large scale fault-tolerant quantum computation. A fault-tolerant decoder is a vital part of the error correction process---it is the algorithm which computes the operations needed to correct or compensate for the errors according to the measured syndrome, even when the measurement itself is error prone. Previously decoders based on minimum-weight perfect matching have been studied. However, these are not immediately generalizable from qubit to qudit codes. In this work, we develop a fault-tolerant decoder for the surface code, capable of efficient operation for qubits and qudits of any dimension, generalizing the decoder first introduced by Bravyi and Haah [Phys. Rev. Lett. 111, 200501 (2013)]. We study its performance when both the physical qudits and the syndromes measurements are subject to generalized uncorrelated bit-flip noise (and the higher dimensional equivalent). We show that, with appropriate enhancements to the decoder and a high enough qudit dimension, a threshold at an error rate of more than 8% can be achieved.Comment: 13 pages, 19 figures, authors' final cop

    Blind topological measurement-based quantum computation

    Full text link
    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 0.0043, which is comparable to that (0.0075) of non-blind topological quantum computation. As the error per gate of the order 0.001 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.Comment: 17 pages, 5 figure

    Structure of 2D Topological Stabilizer Codes

    Full text link
    We provide a detailed study of the general structure of two-dimensional topological stabilizer quantum error correcting codes, including subsystem codes. Under the sole assumption of translational invariance, we show that all such codes can be understood in terms of the homology of string operators that carry a certain topological charge. In the case of subspace codes, we prove that two codes are equivalent under a suitable set of local transformations if and only they have equivalent topological charges. Our approach emphasizes local properties of the codes over global ones.Comment: 54 pages, 11 figures, version accepted in journal, improved presentation and result
    corecore