816 research outputs found
Topological code Autotune
Many quantum systems are being investigated in the hope of building a
large-scale quantum computer. All of these systems suffer from decoherence,
resulting in errors during the execution of quantum gates. Quantum error
correction enables reliable quantum computation given unreliable hardware.
Unoptimized topological quantum error correction (TQEC), while still effective,
performs very suboptimally, especially at low error rates. Hand optimizing the
classical processing associated with a TQEC scheme for a specific system to
achieve better error tolerance can be extremely laborious. We describe a tool
Autotune capable of performing this optimization automatically, and give two
highly distinct examples of its use and extreme outperformance of unoptimized
TQEC. Autotune is designed to facilitate the precise study of real hardware
running TQEC with every quantum gate having a realistic, physics-based error
model.Comment: 13 pages, 17 figures, version accepted for publicatio
Emergence of a confined state in a weakly bent wire
In this paper we use a simple straightforward technique to investigate the
emergence of a bound state in a weakly bent wire. We show that the bend behaves
like an infinitely shallow potential well, and in the limit of small bending
angle and low energy the bend can be presented by a simple 1D delta function
potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and
rewritte
Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example
We study a perturbed Floquet Hamiltonian depending on a coupling
constant . The spectrum is assumed to be pure point and
dense. We pick up an eigen-value, namely , and show the
existence of a function defined on such that
for all , 0 is a point of
density for the set , and the Rayleigh-Schr\"odinger perturbation series
represents an asymptotic series for the function . All ideas
are developed and demonstrated when treating an explicit example but some of
them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51
Effects of switching between anti-TNF therapies on HAQ response in patients who do not respond to their first anti-TNF drug
Objectives. Small studies have shown an improvement in disease activity in patients with RA who have switched between anti-TNF therapies for reasons of inefficacy. However, it is not clear whether switching improves longer term outcomes, such as disability. This analysis compares changes in HAQ scores 1 yr following lack of response to a first anti-TNF based on subsequent treatment during that year
Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals
We report the measurement of infrared transmission of large C60 single
crystals. The spectra exhibit a very rich structure with over 180 vibrational
absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are
observed to have become weakly IR-active. We also observe a large number of
higher order combination modes. The temperature (77K - 300K) and pressure (0 -
25KBar) dependencies of these modes were measured and are presented. Careful
analysis of the IR spectra in conjunction with Raman scattering data showing
second order modes and neutron scattering data, allow the selection of the 46
vibrational modes C60. We are able to fit *all* of the first and second order
data seen in the present IR spectra and the previously published Raman data
(~300 lines total), using these 46 modes and their group theory allowed second
order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon
The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions
This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa
Design of a graphical and interactive interface for facilitating access to drug contraindications, cautions for use, interactions and adverse effects
<p>Abstract</p> <p>Background</p> <p>Drug iatrogeny is important but could be decreased if contraindications, cautions for use, drug interactions and adverse effects of drugs described in drug monographs were taken into account. However, the physician's time is limited during consultations, and this information is often not consulted. We describe here the design of "Mister VCM", a graphical interface based on the VCM graphical language, facilitating access to drug monographs. We also provide an assessment of the usability of this interface.</p> <p>Methods</p> <p>The "Mister VCM" interface was designed by dividing the screen into two parts: a graphical interactive one including VCM icons and synthetizing drug properties, a textual one presenting on demand drug monograph excerpts. The interface was evaluated over 11 volunteer general practitioners, trained in the use of "Mister VCM". They were asked to answer clinical questions related to fictitious randomly generated drug monographs, using a textual interface or "Mister VCM". When answering the questions, correctness of the responses and response time were recorded.</p> <p>Results</p> <p>"Mister VCM" is an interactive interface that displays VCM icons organized around an anatomical diagram of the human body with additional mental, etiological and physiological areas. Textual excerpts of the drug monograph can be displayed by clicking on the VCM icons. The interface can explicitly represent information implicit in the drug monograph, such as the absence of a given contraindication. Physicians made fewer errors with "Mister VCM" than with text (factor of 1.7; <it>p </it>= 0.034) and responded to questions 2.2 times faster (<it>p </it>< 0.001). The time gain with "Mister VCM" was greater for long monographs and questions with implicit replies.</p> <p>Conclusion</p> <p>"Mister VCM" seems to be a promising interface for accessing drug monographs. Similar interfaces could be developed for other medical domains, such as electronic patient records.</p
Colloquium: Mechanical formalisms for tissue dynamics
The understanding of morphogenesis in living organisms has been renewed by
tremendous progressin experimental techniques that provide access to
cell-scale, quantitative information both on theshapes of cells within tissues
and on the genes being expressed. This information suggests that
ourunderstanding of the respective contributions of gene expression and
mechanics, and of their crucialentanglement, will soon leap forward.
Biomechanics increasingly benefits from models, which assistthe design and
interpretation of experiments, point out the main ingredients and assumptions,
andultimately lead to predictions. The newly accessible local information thus
calls for a reflectionon how to select suitable classes of mechanical models.
We review both mechanical ingredientssuggested by the current knowledge of
tissue behaviour, and modelling methods that can helpgenerate a rheological
diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and
tissue scale ("inter-cell") contributions. We recall the mathematical framework
developpedfor continuum materials and explain how to transform a constitutive
equation into a set of partialdifferential equations amenable to numerical
resolution. We show that when plastic behaviour isrelevant, the dissipation
function formalism appears appropriate to generate constitutive equations;its
variational nature facilitates numerical implementation, and we discuss
adaptations needed in thecase of large deformations. The present article
gathers theoretical methods that can readily enhancethe significance of the
data to be extracted from recent or future high throughput
biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few
corrections to the published version, all in Appendix D.2 devoted to large
deformation
Superconductivity in Fullerides
Experimental studies of superconductivity properties of fullerides are
briefly reviewed. Theoretical calculations of the electron-phonon coupling, in
particular for the intramolecular phonons, are discussed extensively. The
calculations are compared with coupling constants deduced from a number of
different experimental techniques. It is discussed why the A_3 C_60 are not
Mott-Hubbard insulators, in spite of the large Coulomb interaction. Estimates
of the Coulomb pseudopotential , describing the effect of the Coulomb
repulsion on the superconductivity, as well as possible electronic mechanisms
for the superconductivity are reviewed. The calculation of various properties
within the Migdal-Eliashberg theory and attempts to go beyond this theory are
described.Comment: 33 pages, latex2e, revtex using rmp style, 15 figures, submitted to
Review of Modern Physics, more information at
http://radix2.mpi-stuttgart.mpg.de/fullerene/fullerene.htm
An iconic language for the graphical representation of medical concepts
<p>Abstract</p> <p>Background</p> <p>Many medication errors are encountered in drug prescriptions, which would not occur if practitioners could remember the drug properties. They can refer to drug monographs to find these properties, however drug monographs are long and tedious to read during consultation. We propose a two-step approach for facilitating access to drug monographs. The first step, presented here, is the design of a graphical language, called VCM.</p> <p>Methods</p> <p>The VCM graphical language was designed using a small number of graphical primitives and combinatory rules. VCM was evaluated over 11 volunteer general practitioners to assess if the language is easy to learn, to understand and to use. Evaluators were asked to register their VCM training time, to indicate the meaning of VCM icons and sentences, and to answer clinical questions related to randomly generated drug monograph-like documents, supplied in text or VCM format.</p> <p>Results</p> <p>VCM can represent the various signs, diseases, physiological states, life habits, drugs and tests described in drug monographs. Grammatical rules make it possible to generate many icons by combining a small number of primitives and reusing simple icons to build more complex ones. Icons can be organized into simple sentences to express drug recommendations. Evaluation showed that VCM was learnt in 2 to 7 hours, that physicians understood 89% of the tested VCM icons, and that they answered correctly to 94% of questions using VCM (versus 88% using text, <it>p </it>= 0.003) and 1.8 times faster (<it>p </it>< 0.001).</p> <p>Conclusion</p> <p>VCM can be learnt in a few hours and appears to be easy to read. It can now be used in a second step: the design of graphical interfaces facilitating access to drug monographs. It could also be used for broader applications, including the design of interfaces for consulting other types of medical document or medical data, or, very simply, to enrich medical texts.</p
- …