236 research outputs found
Climate sensitivity to land use changes over the City of Brussels
Prompted with the ongoing and projected climate change, a wide range of cities have committed, not only to mitigate greenhouse gas emissions but also to implement different climate change adaptation measures. These measures serve to ensure the wellbeing of the urban population. In practice, however, the planning of realistic adaptation measures is a complex process. Prior to starting such endeavor, it may therefore be useful to explore the maximum potential benefit that can be gained through adaptation measures. In this work, simple, extreme yet realistic adaptation measures are proposed in terms of changes in albedo and vegetation fraction. The impact of these land-use scenarios is explored by use of the land surface model SURFEX on the summer climate in terms of heat waves and the urban heat island for the city of Brussels. This is done for different periods in the future using the greenhouse gas scenario RCP8.5
Full orbital solutions in pre-main sequence high-order multiple systems: GG Tau Ab and UX Tau B
High-order multiple (triple and beyond) systems are relatively common. Their
interaction with circumstellar and circumbinary material can have a large
impact on the formation and evolution of planetary systems and depends on their
orbital properties. GG\,Tau and UX\,Tau are two pre-main sequence high-order
multiple systems in which the tightest pair has a projected separation of
--20\,au. Characterizing precisely their orbits is crucial to
establish their long-term stability, to predict the dynamics and evolution of
circumstellar matter, and to evaluate the potential for planet formation in
such systems. We combine existing astrometric measurements with previously
unpublished high-resolution observations of the GG\,Tau\,Ab and UX\,Tau\,B
pairs and perform Keplerian orbital fits. For GG\,Tau\,Ab the data presented
here represent the first detection of orbital motion. For both systems they
yield dramatic increases in orbital coverage ( and
for UX\,Tau\,B and GG\,Tau\,Ab, for orbital periods of and
\,yr, respectively) and allow us to obtain well-constrained orbital
fits, including dynamical masses with and random
and systematic uncertainties. We find that both GG\,Tau\,A and UX\,Tau\,A--B
likely form stable hierarchical systems, although one possible deprojection
solution for GG\,Tau is strongly misaligned and could experience von
Zeipel-Lidov-Kozai oscillations. We further find that the UX\,Tau\,B orbit is
much more eccentric than the GG\,Tau\,Ab one, possibly explaining the lack of
circumstellar material in the former. The newly-determined orbits revive the
question of the dynamical fate of gas and dust in these two hierarchical
systems and should spur new dedicated simulations to assess the long-term
evolution of the systems and the dynamical perturbations imposed by the close
binaries they host.Comment: Accepted for publication in Astronomy & Astrophysic
The VLTI / PIONIER near-infrared interferometric survey of southern T Tauri stars. I. First results
Context : The properties of the inner disks of bright Herbig AeBe stars have
been studied with near infrared (NIR) interferometry and high resolution
spectroscopy. The continuum and a few molecular gas species have been studied
close to the central star; however, sensitivity problems limit direct
information about the inner disks of the fainter T Tauri stars.
Aims : Our aim is to measure some of the properties of the inner regions of
disks surrounding southern T Tauri stars.
Methods : We performed a survey with the PIONIER recombiner instrument at
H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m,
corresponding to a maximum resolution of 3mas (0.45 au at 150 pc).
Results : Thirteen disks are resolved well and the visibility curves are
fully sampled as a function of baseline in the range 45-130 m for these 13
objects. A simple qualitative examination of visibility profiles allows us to
identify a rapid drop-off in the visibilities at short baselines in 8 resolved
disks. This is indicative of a significant contribution from an extended
contribution of light from the disk. We demonstrate that this component is
compatible with scattered light, providing strong support to a prediction made
by Pinte et al. (2008). The amplitude of the drop-off and the amount of dust
thermal emission changes from source to source suggesting that each disk is
different. A by-product of the survey is the identification of a new
milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data
of AK Sco have also been fitted with a binary and disk model.
Conclusions : Visibility data are reproduced well when thermal emission and
scattering form dust are fully considered. The inner radii measured are
consistent with the expected dust sublimation radii. Modelling of AK Sco
suggests a likely coplanarity between the disk and the binary's orbital planeComment: 19 pages, 11 figure
The state-of-the-art of urban climate change modeling and observations
As an effect of climate change, cities need detailed information on urban climates at decision scale that cannot be easily delivered using current observation networks, nor global and even regional climate models. A review is presented of the recent literature and recommendations are formulated for future work. In most cities, historical observational records are too short, discontinuous, or of too poor quality to support trend analysis and climate change attribution. For climate modeling, on the other hand, specific dynamical and thermal parameterization dedicated to the exchange of water and energy between the atmosphere and the urban surfaces have to be implemented. Therefore, to fully understand how cities are impacted by climate change, it is important to have (1) simulations of the urban climate at fine spatial scales (including coastal hazards for coastal cities) integrating global climate scenarios with urban expansion and population growth scenarios and their associated uncertainty estimates, (2) urban climate observations, especially in Global South cities, and (3) spatial data of high resolution on urban structure and form, human behavior, and energy consumption
The CORDEX.be initiative as a foundation for climate services in Belgium
The CORDEX.be project created the foundations for Belgian climate services by producing high-resolution Belgian climate information that (a) incorporates the expertise of the different Belgian climate modeling groups and that (b) is consistent with the outcomes of the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project. The key practical tasks for the project were the coordination of activities among different Belgian climate groups, fostering the links to specific international initiatives and the creation of a stakeholder dialogue. Scientifically, the CORDEX.be project contributed to the EURO-CORDEX project, created a small ensemble of High-Resolution (H-Res) future projections over Belgium at convection-permitting resolutions and coupled these to seven Local Impact Models. Several impact studies have been carried out. The project also addressed some aspects of climate change uncertainties. The interactions and feedback from the stakeholder dialogue led to different practical applications at the Belgian national level
HD 172555: Detection of 63 μ m [OI] emission in a debris disc
Astronomy and Astrophysics 546 (2012): L8 Reproduced with permission from Astronomy & AstrophysicsContext. HD 172555 is a young A7 star belonging to the β Pictoris moving group that harbours a debris disc. The Spitzer/IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas.
Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc.
Methods. As part of the GASPS open time key programme, we obtained Herschel/PACS photometric and spectroscopic observations of the source.We analysed PACS observations of HD 172555 and modelled the spectral energy distribution with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation.
Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 μm in the HD 172555 circumstellar disc. We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 μm).We derive a large dust particle mass of (4.8 ± 0.6) × 10−4 M⊕ and an atomic oxygen mass of 2.5 × 10−2R2 M⊕, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phaseThis research has been funded by Spanish grants AYA 2010-21161-C02-02, CDS2006-00070 and PRICIT-S2009/ESP-1496. J.-C. Augereau and J. Lebreton thank the ANR (contract ANR-2010 BLAN-0505-01, EXOZODI) and the CNES-PNP for financial support. C. Pinte, F. Menard and W.-F. Thi acknowledges funding from the EU FP7-2011 under Grant Agreement nr. 284405. G. Meeus is supported by RYC-2011-07920. G. Meeus, C. Eiroa, I. MendigutÃa and B. Montesinos are partly supported by AYA-2011-26202. F.M. acknowledges support from the Millennium Science Initiative (Chilean Ministry of Economy), through grant Ã’Nucleus P10-022-F
Data for Millennia of genomic stability within the invasive Para C Lineage of Salmonella enterica: date estimation 1
Salmonella enterica serovar Paratyphi C is the causative agent of enteric (paratyphoid) fever. While today a potentially lethal infection of humans that occurs in Africa and Asia, early 20th century observations in Eastern Europe suggest it may once have had a wider-ranging impact on human societies. We recovered a draft Paratyphi C genome from the 800-year-old skeleton of a young woman in Trondheim, Norway, who likely died of enteric fever. Analysis of this genome against a new, significantly expanded database of related modern genomes demonstrated that Paratyphi C is descended from the ancestors of swine pathogens, serovars Choleraesuis and Typhisuis, together forming the Para C Lineage. Our results indicate that Paratyphi C has been a pathogen of humans for at least 1,000 years, and may have evolved after zoonotic transfer from swine during the Neolithic period
Planet Formation Imager (PFI): Science vision and key requirements
The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ∼100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the Hill Sphere of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs
- …