5,806 research outputs found
Neural implementation of psychological spaces
Psychological spaces give natural framework for construction of mental representations. Neural model of psychological spaces provides a link between neuroscience and psychology. Categorization performed in high-dimensional spaces by dynamical associative memory models is approximated with low-dimensional feedforward neural models calculating probability density functions in psychological spaces. Applications to the human categorization experiments are discussed
Neurocognitive Informatics Manifesto.
Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given
What is Computational Intelligence and where is it going?
What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed
Brain-inspired conscious computing architecture
What type of artificial systems will claim to be conscious and will claim to experience qualia? The ability to comment upon physical states of a brain-like dynamical system coupled with its environment seems to be sufficient to make claims. The flow of internal states in such system, guided and limited by associative memory, is similar to the stream of consciousness. Minimal requirements for an artificial system that will claim to be conscious were given in form of specific architecture named articon. Nonverbal discrimination of the working memory states of the articon gives it the ability to experience different qualities of internal states. Analysis of the inner state flows of such a system during typical behavioral process shows that qualia are inseparable from perception and action. The role of consciousness in learning of skills, when conscious information processing is replaced by subconscious, is elucidated. Arguments confirming that phenomenal experience is a result of cognitive processes are presented. Possible philosophical objections based on the Chinese room and other arguments are discussed, but they are insufficient to refute claims articon’s claims. Conditions for genuine understanding that go beyond the Turing test are presented. Articons may fulfill such conditions and in principle the structure of their experiences may be arbitrarily close to human
Platonic model of mind as an approximation to neurodynamics
Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view
Gauge-Independent Approach to Resonant Dark Matter Annihilation
In spontaneously broken gauge theories, transition amplitudes describing
dark-matter (DM) annihilation processes through a resonance may become highly
inaccurate close to a production threshold, if a Breit-Wigner (BW) ansatz with
a constant width is used. To partially overcome this problem, the BW propagator
needs to be modified by including a momentum dependent decay width. However,
such an approach to resonant transition amplitudes generically suffers from
gauge artefacts that may also give rise to a bad or ambiguous high-energy
behaviour for such amplitudes. We address the two problems of gauge dependence
and high-energy unitarity within a gauge-independent framework of resummation
implemented by the so-called Pinch Technique. We study DM annihilation via
scalar resonances in a gauged U(1) complex-scalar extension of the Standard
Model that features a massive stable gauge field which can play the role of the
DM. We find that the predictions for the DM abundance may vary significantly
from previous studies based on the naive BW ansatz and propose an alternative
simple approximation which leads to the correct DM phenomenology. In
particular, our results do not depend on the gauge-fixing parameter and are
consistent with considerations from high-energy unitarity.Comment: 29 pages, 9 figures, v2: minor typos corrected, matches published
versio
Creativity and the Brain
Neurocognitive approach to higher cognitive functions that bridges the gap between psychological and neural level of description is introduced. Relevant facts about the brain, working memory and representation of symbols in the brain are summarized. Putative brain processes responsible for problem solving, intuition, skill learning and automatization are described. The role of non-dominant brain hemisphere in solving problems requiring insight is conjectured. Two factors seem to be essential for creativity: imagination constrained by experience, and filtering that selects most interesting solutions. Experiments with paired words association are analyzed in details and evidence for stochastic resonance effects is found. Brain activity in the process of invention of novel words is proposed as the simplest way to understand creativity using experimental and computational means. Perspectives on computational models of creativity are discussed
- …
