2,324 research outputs found

    b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity

    Full text link
    At tree-level Higgs production in association with a b-quark pair proceeds through the small Yukawa bottom coupling in the Standard Model. Even in the limit where this coupling vanishes, electroweak one-loop effects, through the top-Higgs Yukawa coupling in particular, can still trigger this reaction. This contribution is small for Higgs masses around 120GeV but it quickly picks up for higher Higgs masses especially because the one-loop amplitude develops a leading Landau singularity and new thresholds open up. These effects can be viewed as the production of a pair of top quarks which rescatter to give rise to Higgs production through WW fusion. We study the leading Landau singularity in detail. Since this singularity is not integrable when the one-loop amplitude is squared, we regulate the cross section by taking into account the width of the internal top and W particles. This requires that we extend the usual box one-loop function to the case of imaginary masses. We show how this can be implemented analytically in our case. We study in some detail the cross section at the LHC as a function of the Higgs mass and show how some distributions can be drastically affected compared to the tree-level result.Comment: 48 pages, 20 figures. Phys.Rev.D accepted version. Conclusions unchanged, minor changes and references adde

    High-field irreversible moment reorientation in the antiferromagnet Fe1.1_{1.1}Te

    Full text link
    Magnetization measurements have been performed on single-crystalline Fe1.1_{1.1}Te in pulsed magnetic fields H⊄c\mathbf{H}\perp\mathbf{c} up to 53 T and temperatures from 4.2 to 65 K. At T=4.2T=4.2 K, a non-reversible reorientation of the antiferromagnetic moments is observed at ÎŒ0HR=48\mu_0H_R=48 T as the pulsed field is on the rise. No anomaly is observed at HRH_R during the fall of the field and, as long as the temperature is unchanged, during both rises and falls of additional field pulses. The transition at HRH_R is reactivated if the sample is warmed up above the N\'{e}el temperature TN≃60T_N\simeq60 K and cooled down again. The magnetic field-temperature phase diagram of Fe1.1_{1.1}Te in H⊄c\mathbf{H}\perp\mathbf{c} is also investigated. We present the temperature dependence of HRH_R, as well as that of the antiferromagnetic-to-paramagnetic borderline HcH_c in temperatures above 40 K.Comment: 5 pages, 4 figure

    Isolated OB Associations in Stripped HI Gas Clouds

    Full text link
    HST ACS/HRC images in UV (F250W), V (F555W), and I (F814W) resolve three isolated OB associations that lie up to 30 kpc from the stellar disk of the S0 galaxy NGC 1533. Previous narrow-band Halpha imaging and optical spectroscopy showed these objects as unresolved intergalactic HII regions having Halpha luminosities consistent with single early-type O stars. These young stars lie in stripped HI gas with column densities ranging from 1.5 - 2.5 * 10^20 cm^-2 and velocity dispersions near 30 km s^-1. Using the HST broadband colors and magnitudes along with previously-determined Halpha luminosities, we place limits on the masses and ages of each association, considering the importance of stochastic effects for faint (M_V >-8) stellar populations. The upper limits to their stellar masses range from 600 M_sun to 7000 M_sun, and ages range from 2 - 6 Myrs. This analysis includes an updated calculation of the conversion factor between the ionizing luminosity and the total number of main sequence O stars contained within an HII region. The photometric properties and sizes of the isolated associations and other objects in the HRC fields are consistent with those of Galactic stellar associations, open clusters and/or single O and B stars. We interpret the age-size sequence of associations and clustered field objects as an indication that these isolated associations are most likely rapidly dispersing. Furthermore, we consider the possibility that these isolated associations represent the first generation of stars in the HI ring surrounding NGC 1533. This work suggests star formation in the unique environment of a galaxy's outermost gaseous regions proceeds similarly to that within the Galactic disk and that star formation in tidal debris may be responsible for building up a younger halo component.Comment: 21 pages, 9 figures, 6 tables; accepted for publication in Ap

    17O NMR study of the intrinsic magnetic susceptibility and spin dynamics of the quantum kagome antiferromagnet ZnCu3(OH)6Cl2

    Get PDF
    We report through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around non-magnetic defects issued from natural Zn/ Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in non-frustrated antiferromagnetic materials. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data [cond-mat 070314] and suggest a flat q-dependence of the excitations.Comment: Accepted for publication in Phys. Rev. Lett., 3 jan. 2008 Figure 1 has been modified to include a two-components fit of the 17O NMR spectru
    • 

    corecore