3 research outputs found

    Mitigating effect of embankment to adjacent pipe with CDM columns

    Get PDF
    Pipelines are valuable infrastructures that covering a large area or expanding to long distance for the transporting function. This leads to the variety of loads and effects applied on such buried structures. A thread to pipeline integrity is the construction of the embankment on the soft soil which leads to the displacement of the pipe adjacent to the slope. This displacement will effect to the increase of internal force or causing failure of the near-by pipes. The use of concrete pile to improve the soil properties may be a solution; however, the cost for this is expensive. To propose an alternative solution for the problem, this study uses a system of cement deep mixing, CDM, columns as the solution for protecting the pipe. A simple 2D Finite Element, FE, model using Plaxis software has been established based on the equivalent soil approach which considering the CDM columns and their surrounding soil as an unified soil. The effectiveness of the proposed solution has been numerically investigated and proven. The lateral displacement of pipe and the maximum ring bending moment and other internal forces are significantly reduced with the appearance of the CDM columns. The selective parametric study has been implemented revealing the critical input variables are the distance of pipe to the slope and the length of the CDM column

    Adjunctive dexamethasone for the treatment of HIV-uninfected adults with tuberculous meningitis stratified by Leukotriene A4 hydrolase genotype (LAST ACT): Study protocol for a randomised double blind placebo controlled non-inferiority trial [version 1; referees: 2 approved]

    Get PDF
    Background: Tuberculosis kills more people than any other bacterial infection worldwide. In tuberculous meningitis (TBM), a common functional promoter variant (C/T transition) in the gene encoding leukotriene A4 hydrolase (LTA4H), predicts pre-treatment inflammatory phenotype and response to dexamethasone in HIV-uninfected individuals. The primary aim of this study is to determine whether LTA4H genotype determines benefit or harm from adjunctive dexamethasone in HIV-uninfected Vietnamese adults with TBM. The secondary aim is to investigate alternative management strategies in individuals who develop drug induced liver injury (DILI) that will enable the safe continuation of rifampicin and isoniazid therapy.  Methods: We will perform a parallel group, randomised (1:1), double blind, placebo-controlled,  multi-centre Phase III non-inferiority trial, comparing dexamethasone versus placebo for 6-8 weeks in addition to standard anti-tuberculosis treatment in HIV-uninfected patients with TBM stratified by LTA4H genotype. The primary endpoint will be death or new neurological event. The trial will enrol approximately 720 HIV-uninfected adults with a clinical diagnosis of TBM, from two hospitals in Ho Chi Minh City, Vietnam. 640 participants with CC or CT- LTA4H genotype will be randomised to either dexamethasone or placebo, and the remaining TT- genotype participants will be treated with standard-of-care dexamethasone. We will also perform a randomised comparison of three management strategies for anti-tuberculosis DILI. An identical ancillary study will also be perfomed in the linked randomised controlled trial of dexamethasone in HIV-infected adults with TBM (ACT HIV).  Discussion: Previous data have shown that LTA4H genotype may be a critical determinant of inflammation and consequently of adjunctive anti-inflammatory treatment response in TBM. We will stratify dexamethasone therapy according to LTA4H genotype in HIV-uninfected adults, which may indicate a role for targeted anti-inflammatory therapy according to variation in LTA4H C/T transition. A comparison of DILI management strategies may allow the safe continuation of rifampicin and isoniazid

    Mitigating effect of embankment to adjacent pipe with CDM columns

    No full text
    Pipelines are valuable infrastructures that covering a large area or expanding to long distance for the transporting function. This leads to the variety of loads and effects applied on such buried structures. A thread to pipeline integrity is the construction of the embankment on the soft soil which leads to the displacement of the pipe adjacent to the slope. This displacement will effect to the increase of internal force or causing failure of the near-by pipes. The use of concrete pile to improve the soil properties may be a solution; however, the cost for this is expensive. To propose an alternative solution for the problem, this study uses a system of cement deep mixing, CDM, columns as the solution for protecting the pipe. A simple 2D Finite Element, FE, model using Plaxis software has been established based on the equivalent soil approach which considering the CDM columns and their surrounding soil as an unified soil. The effectiveness of the proposed solution has been numerically investigated and proven. The lateral displacement of pipe and the maximum ring bending moment and other internal forces are significantly reduced with the appearance of the CDM columns. The selective parametric study has been implemented revealing the critical input variables are the distance of pipe to the slope and the length of the CDM column
    corecore