245 research outputs found

    A better understanding of ecological conditions for Leontopodium alpinum Cassini in the Swiss Alps

    Get PDF
    Although Leontopodium alpinum is considered to be threatened in many countries, only limited scientific information about its autecology is available. In this study, we aim to define the most important ecological factors which influence the distribution of L. alpinum in the Swiss Alps. These were assessed at the national scale using species distribution models based on topoclimatic predictors and at the community scale using exhaustive plant inventories. The latter were analysed using hierarchical clustering and principal component analysis, and the results were interpreted using ecological indicator values. L. alpinum was found almost exclusively on base-rich bedrocks (limestone and ultramaphic rocks). The species distribution models showed that the available moisture (dry regions, mostly in the Inner Alps), elevation (mostly above 2000 m.a.s.l.) and slope (mostly >30°) were the most important predictors. The relevés showed that L. alpinum is present in a wide range of plant communities, all subalpine-alpine open grasslands, with a low grass cover. As a light-demanding and short species, L. alpinum requires light at ground level; hence, it can only grow in open, nutrient-poor grasslands. These conditions are met in dry conditions (dry, summer-warm climate, rocky and draining soil, south-facing aspect and/or steep slope), at high elevations, on oligotrophic soils and/or on windy ridges. Base-rich soils appear to also be essential, although it is still unclear if this corresponds to physiological or ecological (lower competition) requirements

    Outbreak among drug users caused by a clonal strain of group A streptococcus.

    Get PDF
    We describe an outbreak among drug users of severe soft-tissue infections caused by a clonal strain of group A streptococcus of M-type 25. Cases (n = 19) in drug users were defined as infections (mainly needle abscesses) due to the outbreak strain. Comparison with controls showed that infected drug users bought drugs more often at a specific place. Drug purchase and use habits may have contributed to this outbreak

    Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models

    Get PDF
    Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints

    CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma.

    Get PDF
    Sorafenib is the first-line drug used for patients with advanced hepatocellular carcinoma (HCC). However, acquired sorafenib resistance in cancer patients limits its efficacy. Here, we performed the first genome-wide CRISPR/Cas9-based screening on sorafenib-treated HCC cells to identify essential genes for non-mutational mechanisms related to acquired sorafenib resistance and/or sensitivity in HCC cells. KEAP1 was identified as the top candidate gene by Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK). KEAP1 disrupted HCC cells were less sensitive than wild-type cells in short- and long-term sorafenib treatments. Compared to wild-type cells, KEAP1-disrupted cells showed lower basal and sorafenib-induced reactive oxygen species (ROS) levels and were more resistant to oxidative stress-induced cell death. The absence of KEAP1 led to increased activity of Nrf2, a key transcription factor controlling antioxidant responses, as further evidenced by increased expression of Nrf2-controlled genes including NQO1, GPX2 and TXNRD1, which were positively associated with chemoresistance. In addition, KEAP1 disruption counteracted the reduction of cell viability and the elevation of ROS caused by lenvatinib, a drug that recently showed clinical efficacy as a first-line treatment for unresectable HCC. Finally, Keap1 disruption also increased the resistance of cells to regorafenib, a recently approved drug to treat HCC as a second line therapy. Taken together, our data indicate that deregulation of the KEAP1/Nrf2 pathway following KEAP1 inactivation contributes to sorafenib, lenvatinib, and regorafenib resistance in human HCC cells through up-regulation of Nrf2 downstream genes and decreased ROS levels

    Risks management and cobots. Identifying critical variables

    Get PDF
    Trabajo presentado en: 29th European Safety and Reliability Conference (ESREL), 22–26 September 2019, HannoverA collaborative robot or a "Cobot" is the name of a robot that can share a workspace with operators in the absence of a protective fence or with only partial protection. They represent a new and expanding sector of industrial robotics. This investigation draws from the latest international rules and safety parameters related to work with collaborative robots. Its detailed research is motivated by the design of a collaborative industrial robot system, hazard elimination, risk reduction, and different collaborative operations, such as power and force limiting, collaborative operation design, and end-effector safety requirements, among others. The purpose of our study is to analyze the most important variables that must be controlled in accordance with the desired use of the Cobot, according to ISO / TS 15066, ISO / TR 20218-1and some other generic safety regulations on machines and industrial robots. A series of observations and appreciations on the use of the Cobot will also be presented

    Disentangling the processes driving plant assemblages in mountain grasslands across spatial scales and environmental gradients

    Get PDF
    1. Habitat filtering and limiting similarity are well-documented ecological assembly processes that hierarchically filter species across spatial scales, from a regional pool to local assemblages. However, information on the effects of fine-scale spatial partitioning of species, working as an additional mechanism of coexistence, on community patterns, is much scarcer. 2. In this study, we quantified the importance of fine-scale spatial partitioning, relative to habitat filtering and limiting similarity, in structuring grassland communities in the western Swiss Alps. To do so, 298 vegetation plots (2 m × 2 m ) each with five nested subplots (20 cm × 20 cm) were used for trait based assembly tests (i.e. comparisons with several alternative null expectations), examining the observed plot and subplot level α-diversity (indicating habitat filtering and limiting similarity) and the between-subplot β-diversity of traits (indicating fine-scale spatial partitioning). We further assessed variations in the detected signatures of these assembly processes along a set of environmental gradients. 3. We found habitat filtering to be the dominating assembly process at the plot level with diminished effect at the subplot level, while limiting similarity prevailed at the subplot level with weaker average effect at the plot level. Plot-level limiting similarity was positively correlated with fine-scale partitioning suggesting that the trait divergence may result from a combination of competitive exclusion between functionally similar species and environmental micro-heterogeneities. Overall, signatures of assembly processes only marginally changed along environmental gradients but the observed trends were more prominent at the plot than at the subplot scale. Synthesis: Our study emphasises the importance of considering multiple assembly processes and traits simultaneously across spatial scales and environmental gradients to understand the complex drivers of plant community composition

    The syncytial Drosophila embryo as a mechanically excitable medium

    Get PDF
    Mitosis in the early syncytial Drosophila embryo is highly correlated in space and time, as manifested in mitotic wavefronts that propagate across the embryo. In this paper we investigate the idea that the embryo can be considered a mechanically-excitable medium, and that mitotic wavefronts can be understood as nonlinear wavefronts that propagate through this medium. We study the wavefronts via both image analysis of confocal microscopy videos and theoretical models. We find that the mitotic waves travel across the embryo at a well-defined speed that decreases with replication cycle. We find two markers of the wavefront in each cycle, corresponding to the onsets of metaphase and anaphase. Each of these onsets is followed by displacements of the nuclei that obey the same wavefront pattern. To understand the mitotic wavefronts theoretically we analyze wavefront propagation in excitable media. We study two classes of models, one with biochemical signaling and one with mechanical signaling. We find that the dependence of wavefront speed on cycle number is most naturally explained by mechanical signaling, and that the entire process suggests a scenario in which biochemical and mechanical signaling are coupled

    Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema

    Get PDF
    Hyperpolarized 83Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate to surface to volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method utilizes the nuclear electric properties of the spin I = 9/2 isotope 83Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase induced model of emphysema. A significant 83Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase treated lungs compared to the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface to volume ratio in the emphysema model that was validated by histology. The finding supports usage of 83Kr SQUARE as new biomarker for surface to volume ratio changes in emphysema

    Prevalence of SARS-CoV-2 in Household Members and Other Close Contacts of COVID-19 Cases: A Serologic Study in Canton of Vaud, Switzerland.

    Get PDF
    Research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission within households and other close settings using serological testing is scarce. We invited coronavirus disease 2019 (COVID-19) cases diagnosed between February 27 and April 1, 2020, in Canton of Vaud, Switzerland, to participate, along with household members and other close contacts. Anti-SARS-CoV-2 immunoglobulin G antibodies were measured using a Luminex immunoassay. We estimated factors associated with serological status using generalized estimating equations. Overall, 219 cases, 302 household members, and 69 other close contacts participated between May 4 and June 27, 2020. More than half of household members (57.2%; 95% CI, 49.7%-64.3%) had developed a serologic response to SARS-CoV-2, while 19.0% (95% CI, 10.0%-33.2%) of other close contacts were seropositive. After adjusting for individual and household characteristics, infection risk was higher in household members aged ≥65 years than in younger adults (adjusted odds ratio [aOR], 3.63; 95% CI, 1.05-12.60) and in those not strictly adhering to simple hygiene rules like hand washing (aOR, 1.80; 95% CI, 1.02-3.17). The risk was lower when more than 5 people outside home were met during semiconfinement, compared with none (aOR, 0.35; 95% CI, 0.16-0.74). Individual risk of household members to be seropositive was lower in large households (22% less per each additional person). During semiconfinement, household members of a COVID-19 case were at very high risk of getting infected, 3 times more than close contacts outside home. This highlights the need to provide clear messages on protective measures applicable at home. For elderly couples, who were especially at risk, providing external support for daily basic activities is essential
    corecore