124 research outputs found

    On Darboux-Treibich-Verdier potentials

    Full text link
    It is shown that the four-parameter family of elliptic functions uD(z)=m0(m0+1)℘(z)+∑i=13mi(mi+1)℘(z−ωi)u_D(z)=m_0(m_0+1)\wp(z)+\sum_{i=1}^3 m_i(m_i+1)\wp(z-\omega_i) introduced by Darboux and rediscovered a hundred years later by Treibich and Verdier, is the most general meromorphic family containing infinitely many finite-gap potentials.Comment: 8 page

    On the Equivalence of Different Lax Pairs for the Kac-van Moerbeke Hierarchy

    Full text link
    We give a simple algebraic proof that the two different Lax pairs for the Kac-van Moerbeke hierarchy, constructed from Jacobi respectively super-symmetric Dirac-type difference operators, give rise to the same hierarchy of evolution equations. As a byproduct we obtain some new recursions for computing these equations.Comment: 8 page

    On the calculation of finite-gap solutions of the KdV equation

    Full text link
    A simple and general approach for calculating the elliptic finite-gap solutions of the Korteweg-de Vries (KdV) equation is proposed. Our approach is based on the use of the finite-gap equations and the general representation of these solutions in the form of rational functions of the elliptic Weierstrass function. The calculation of initial elliptic finite-gap solutions is reduced to the solution of the finite-band equations with respect to the parameters of the representation. The time evolution of these solutions is described via the dynamic equations of their poles, integrated with the help of the finite-gap equations. The proposed approach is applied by calculating the elliptic 1-, 2- and 3-gap solutions of the KdV equations

    Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions

    Full text link
    We investigate multi-dimensional Hamiltonian systems associated with constant Poisson brackets of hydrodynamic type. A complete list of two- and three-component integrable Hamiltonians is obtained. All our examples possess dispersionless Lax pairs and an infinity of hydrodynamic reductions.Comment: 34 page

    Integrable Systems and Metrics of Constant Curvature

    Full text link
    In this article we present a Lagrangian representation for evolutionary systems with a Hamiltonian structure determined by a differential-geometric Poisson bracket of the first order associated with metrics of constant curvature. Kaup-Boussinesq system has three local Hamiltonian structures and one nonlocal Hamiltonian structure associated with metric of constant curvature. Darboux theorem (reducing Hamiltonian structures to canonical form ''d/dx'' by differential substitutions and reciprocal transformations) for these Hamiltonian structures is proved

    Axial anomaly with the overlap-Dirac operator in arbitrary dimensions

    Get PDF
    We evaluate for arbitrary even dimensions the classical continuum limit of the lattice axial anomaly defined by the overlap-Dirac operator. Our calculational scheme is simple and systematic. In particular, a powerful topological argument is utilized to determine the value of a lattice integral involved in the calculation. When the Dirac operator is free of species doubling, the classical continuum limit of the axial anomaly in various dimensions is combined into a form of the Chern character, as expected.Comment: 9 pages, uses JHEP.cls and amsfonts.sty, the final version to appear in JHE

    Dispersionless Toda hierarchy and two-dimensional string theory

    Full text link
    The dispersionless Toda hierarchy turns out to lie in the heart of a recently proposed Landau-Ginzburg formulation of two-dimensional string theory at self-dual compactification radius. The dynamics of massless tachyons with discrete momenta is shown to be encoded into the structure of a special solution of this integrable hierarchy. This solution is obtained by solving a Riemann-Hilbert problem. Equivalence to the tachyon dynamics is proven by deriving recursion relations of tachyon correlation functions in the machinery of the dispersionless Toda hierarchy. Fundamental ingredients of the Landau-Ginzburg formulation, such as Landau-Ginzburg potentials and tachyon Landau-Ginzburg fields, are translated into the language of the Lax formalism. Furthermore, a wedge algebra is pointed out to exist behind the Riemann-Hilbert problem, and speculations on its possible role as generators of ``extra'' states and fields are presented.Comment: LaTeX 21 pages, KUCP-0067 (typos are corrected and a brief note is added

    The Whitham Deformation of the Dijkgraaf-Vafa Theory

    Full text link
    We discuss the Whitham deformation of the effective superpotential in the Dijkgraaf-Vafa (DV) theory. It amounts to discussing the Whitham deformation of an underlying (hyper)elliptic curve. Taking the elliptic case for simplicity we derive the Whitham equation for the period, which governs flowings of branch points on the Riemann surface. By studying the hodograph solution to the Whitham equation it is shown that the effective superpotential in the DV theory is realized by many different meromorphic differentials. Depending on which meromorphic differential to take, the effective superpotential undergoes different deformations. This aspect of the DV theory is discussed in detail by taking the N=1^* theory. We give a physical interpretation of the deformation parameters.Comment: 35pages, 1 figure; v2: one section added to give a physical interpretation of the deformation parameters, one reference added, minor corrections; v4: minor correction

    Systems of Hess-Appel'rot type

    Full text link
    We construct higher-dimensional generalizations of the classical Hess-Appel'rot rigid body system. We give a Lax pair with a spectral parameter leading to an algebro-geometric integration of this new class of systems, which is closely related to the integration of the Lagrange bitop performed by us recently and uses Mumford relation for theta divisors of double unramified coverings. Based on the basic properties satisfied by such a class of systems related to bi-Poisson structure, quasi-homogeneity, and conditions on the Kowalevski exponents, we suggest an axiomatic approach leading to what we call the "class of systems of Hess-Appel'rot type".Comment: 40 pages. Comm. Math. Phys. (to appear

    Isospectral Flow and Liouville-Arnold Integration in Loop Algebras

    Get PDF
    A number of examples of Hamiltonian systems that are integrable by classical means are cast within the framework of isospectral flows in loop algebras. These include: the Neumann oscillator, the cubically nonlinear Schr\"odinger systems and the sine-Gordon equation. Each system has an associated invariant spectral curve and may be integrated via the Liouville-Arnold technique. The linearizing map is the Abel map to the associated Jacobi variety, which is deduced through separation of variables in hyperellipsoidal coordinates. More generally, a family of moment maps is derived, identifying certain finite dimensional symplectic manifolds with rational coadjoint orbits of loop algebras. Integrable Hamiltonians are obtained by restriction of elements of the ring of spectral invariants to the image of these moment maps. The isospectral property follows from the Adler-Kostant-Symes theorem, and gives rise to invariant spectral curves. {\it Spectral Darboux coordinates} are introduced on rational coadjoint orbits, generalizing the hyperellipsoidal coordinates to higher rank cases. Applying the Liouville-Arnold integration technique, the Liouville generating function is expressed in completely separated form as an abelian integral, implying the Abel map linearization in the general case.Comment: 42 pages, 2 Figures, 1 Table. Lectures presented at the VIIIth Scheveningen Conference, held at Wassenaar, the Netherlands, Aug. 16-21, 199
    • …
    corecore