1,352 research outputs found

    Lattice Gauge Fields Topology Uncovered by Quaternionic sigma-model Embedding

    Full text link
    We investigate SU(2) gauge fields topology using new approach, which exploits the well known connection between SU(2) gauge theory and quaternionic projective sigma-models and allows to formulate the topological charge density entirely in terms of sigma-model fields. The method is studied in details and for thermalized vacuum configurations is shown to be compatible with overlap-based definition. We confirm that the topological charge is distributed in localized four dimensional regions which, however, are not compatible with instantons. Topological density bulk distribution is investigated at different lattice spacings and is shown to possess some universal properties.Comment: revtex4, 19 pages (24 ps figures included); replaced to match the published version, to appear in PRD; minor changes, references adde

    Topological Phenomena in the Real Periodic Sine-Gordon Theory

    Full text link
    The set of real finite-gap Sine-Gordon solutions corresponding to a fixed spectral curve consists of several connected components. A simple explicit description of these components obtained by the authors recently is used to study the consequences of this property. In particular this description allows to calculate the topological charge of solutions (the averaging of the xx-derivative of the potential) and to show that the averaging of other standard conservation laws is the same for all components.Comment: LaTeX, 18 pages, 3 figure

    Bi-Hamiltonian representation of St\"{a}ckel systems

    Full text link
    It is shown that a linear separation relations are fundamental objects for integration by quadratures of St\"{a}ckel separable Liouville integrable systems (the so-called St\"{a}ckel systems). These relations are further employed for the classification of St\"{a}ckel systems. Moreover, we prove that {\em any} St\"{a}ckel separable Liouville integrable system can be lifted to a bi-Hamiltonian system of Gel'fand-Zakharevich type. In conjunction with other known result this implies that the existence of bi-Hamiltonian representation of Liouville integrable systems is a necessary condition for St\"{a}ckel separability.Comment: To appear in Physical Review

    Solution of the dispersionless Hirota equations

    Get PDF
    The dispersionless differential Fay identity is shown to be equivalent to a kernel expansion providing a universal algebraic characterization and solution of the dispersionless Hirota equations. Some calculations based on D-bar data of the action are also indicated.Comment: Late

    Quantum Transport in Molecular Rings and Chains

    Full text link
    We study charge transport driven by deformations in molecular rings and chains. Level crossings and the associated Longuet-Higgins phase play a central role in this theory. In molecular rings a vanishing cycle of shears pinching a gap closure leads, generically, to diverging charge transport around the ring. We call such behavior homeopathic. In an infinite chain such a cycle leads to integral charge transport which is independent of the strength of deformation. In the Jahn-Teller model of a planar molecular ring there is a distinguished cycle in the space of uniform shears which keeps the molecule in its manifold of ground states and pinches level crossing. The charge transport in this cycle gives information on the derivative of the hopping amplitudes.Comment: Final version. 26 pages, 8 fig

    Two-dimensional algebro-geometric difference operators

    Full text link
    A generalized inverse problem for a two-dimensional difference operator is introduced. A new construction of the algebro-geometric difference operators of two types first considered by I.M.Krichever and S.P.Novikov is proposedComment: 11 pages; added references, enlarged introduction, rewritten abstrac
    • …
    corecore