105 research outputs found
Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C
Astrophysical S-factors of radiative capture reactions on light nuclei have
been calculated in a two-cluster potential model, taking into account the
separation of orbital states by the use of Young schemes. The local two-body
potentials describing the interaction of the clusters were determined by
fitting scattering data and properties of bound states. The many-body character
of the problem is approximatively accounted for by Pauli forbidden states. An
important feature of the approach is the consideration of the dependence of the
interaction potential between the clusters on the orbital Young schemes, which
determine the permutation symmetry of the nucleon system. Proton capture on 2H,
6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low
energies were described reasonably well when the phase shifts for
cluster-cluster scattering, extracted from precise data, were used. This shows
that decreasing the experimental error on differential elastic scattering cross
sections of light nuclei at astrophysical energies is very important also to
allow a more accurate phase shift analysis. A future increase in precision will
allow more definite conclusions regarding the reaction mechanisms and
astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with
arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198
Astrophysical S-factor for the radiative capture reaction 13C(p,g)14N
The phase shift analysis, done on the basis of the known measurements of the
differential cross-sections of the p13C elastic scattering at the energy range
250-750 keV, shows that it is enough to take into account only 3S1 wave in the
considered energy region. The potential for the triplet 3S1 state in p13C
system at the resonance energy 0.55 MeV corresponding to quantum numbers JpT =
1-1 as well as the potential for the 3P1 bound state of 14N were constructed on
the basis of the obtained scattering phase shifts. The possibility to describe
the experimental data of the astrophysical S-factor of the p13C radiative
capture at the energies 0.03-0.8 MeV was considered within the potential
cluster model with the forbidden states. It was shown that we properly succeed
in explanation of the energy behavior of the astrophysical S-factor for the
p13C radiative capture at the resonance energy range 0.55 MeV (laboratory
system).Comment: 8 p., 2 fi
- …