1,082 research outputs found

    ORIGAMIX, a CdTe-based spectro-imager development for nuclear applications

    Full text link
    The Astrophysics Division of CEA Saclay has a long history in the development of CdTe based pixelated detection planes for X and gamma-ray astronomy, with time-resolved imaging and spectrometric capabilities. The last generation, named Caliste HD, is an all-in-one modular instrument that fulfills requirements for space applications. Its full-custom front-end electronics is designed to work over a large energy range from 2 keV to 1 MeV with excellent spectroscopic performances, in particular between 10 and 100 keV (0.56 keV FWHM and 0.67 keV FWHM at 13.9 and 59.5 keV). In the frame of the ORIGAMIX project, a consortium based on research laboratories and industrials has been settled in order to develop a new generation of gamma camera. The aim is to develop a system based on the Caliste architecture for post-accidental interventions or homeland security, but integrating new properties (advanced spectrometry, hybrid working mode) and suitable for industry. A first prototype was designed and tested to acquire feedback for further developments. In this study, we particularly focused on spectrometric performances with high energies and high fluxes. Therefore, our device was exposed to energies up to 700 keV (133Ba, 137Cs) and we measured the evolution of energy resolution (0.96 keV at 80 keV, 2.18 keV at 356 keV, 3.33 keV at 662 keV). Detection efficiency decreases after 150 keV, as Compton effect becomes dominant. However, CALISTE is also designed to handle multiple events, enabling Compton scattering reconstruction, which can drastically improve detection efficiencies and dynamic range for higher energies up to 1408 keV (22Na, 60Co, 152Eu) within a 1-mm thick detector. In particular, such spectrometric performances obtained with 152Eu and 60Co were never measured before with this kind of detector.Comment: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Available online 9 January 2015, ISSN 0168-9002 (http://www.sciencedirect.com/science/article/pii/S0168900215000133). Keywords: CdTe; X-ray; Gamma-ray; Spectrometry; Charge-sharing; Astrophysics Instrumentation; Nuclear Instrumentation; Gamma-ray camera

    A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids

    Get PDF
    A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. <br><br> Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing &nabla; &times; &nabla;, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. <br><br> In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly

    Coherent low-energy charge transport in a diffusive S-N-S junction

    Full text link
    We have studied the current voltage characteristics of diffusive mesoscopic Nb-Cu-Nb Josephson junctions with highly-transparent Nb-Cu interfaces. We consider the low-voltage and high-temperature regime eV<\epsilon_{c}<k_{B}T where epsilon_{c} is the Thouless energy. The observed excess current as well as the observed sub-harmonic Shapiro steps under microwave irradiation suggest the occurrence of low-energy coherent Multiple Andreev Reflection (MAR).Comment: 4 pages, 4 figures, final versio

    Acoustic characterization of Hofstadter butterfly with resonant scatterers

    Full text link
    We are interested in the experimental characterization of the Hofstadter butterfly by means of acoustical waves. The transmission of an acoustic pulse through an array of 60 variable and resonant scatterers periodically distribued along a waveguide is studied. An arbitrary scattering arrangement is realized by using the variable length of each resonator cavity. For a periodic modulation, the structures of forbidden bands of the transmission reproduce the Hofstadter butterfly. We compare experimental, analytical, and computational realizations of the Hofstadter butterfly and we show the influence of the resonances of the scatterers on the structure of the butterfly

    Growth and texture of Spark Plasma Sintered Al2O3 ceramics: a combined analysis of X-rays and Electron Back Scatter Diffraction

    Full text link
    Textured alumina ceramics were obtained by Spark Plasma Sintering (SPS) of undoped commercial a-Al2O3 powders. Various parameters (density, grain growth, grain size distribution) of the alumina ceramics, sintered at two typical temperatures 1400{\deg}C and 1700{\deg}C, are investigated. Quantitative textural and structural analysis, carried out using a combination of Electron Back Scattering Diffraction (EBSD) and X-ray diffraction (XRD), are represented in the form of mapping, and pole figures. The mechanical properties of these textured alumina ceramics include high elastic modulus and hardness value with high anisotropic nature, opening the door for a large range of applicationsComment: 16 pages, 6 figures, submitted to J. Appl. Phy

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table
    corecore