1,546 research outputs found

    Collective modes and correlations in one-component plasmas

    Full text link
    The static and time-dependent potential and surface charge correlations in a plasma with a boundary are computed for different shapes of the boundary. The case of a spheroidal or spherical one-component plasma is studied in detail because experimental results are available for such systems. Also, since there is some knowlegde both experimental and theoretical about the electrostatic collective modes of these plasmas, the time-dependent correlations are computed using a method involving these modes.Comment: 20 pages, plain TeX, submitted to Phys. Rev.

    Evolution of Ultracold, Neutral Plasmas

    Get PDF
    We present the first large-scale simulations of an ultracold, neutral plasma, produced by photoionization of laser-cooled xenon atoms, from creation to initial expansion, using classical molecular dynamics methods with open boundary conditions. We reproduce many of the experimental findings such as the trapping efficiency of electrons with increased ion number, a minimum electron temperature achieved on approach to the photoionization threshold, and recombination into Rydberg states of anomalously-low principal quantum number. In addition, many of these effects establish themselves very early in the plasma evolution (\sim ns) before present experimental observations begin.Comment: 4 pages, 3 figures, submitted to PR

    Slow relaxation in the two dimensional electron plasma under the strong magnetic field

    Full text link
    We study slow relaxation processes in the point vortex model for the two-dimensional pure electron plasma under the strong magnetic field. By numerical simulations, it is shown that, from an initial state, the system undergoes the fast relaxation to a quasi-stationary state, and then goes through the slow relaxation to reach a final state. From analysis of simulation data, we find (i) the time scale of the slow relaxation increases linearly to the number of electrons if it is measured by the unit of the bulk rotation time, (ii) during the slow relaxation process, each electron undergoes an superdiffusive motion, and (iii) the superdiffusive motion can be regarded as the Levy flight, whose step size distribution is of the power law. The time scale that each electron diffuses over the system size turns out to be much shorter than that of the slow relaxation, which suggests that the correlation among the superdiffusive trajectories is important in the slow relaxation process.Comment: 11pages, 19 figures. Submitted to J. Phys. Soc. Jp

    Glueball spectrum and the Pomeron in the Wilson loop approach

    Get PDF
    Using a nonperturbative method based on asymptotic behaviour of Wilson loops we calculate masses of glueballs and corresponding Regge-trajectories. The only input is string tension fixed by meson Regge slope, while perturbative contributions to spin splittings are defined by standard alpha_s values. The masses of lowest glueball states are in a perfect agreement with lattice results. The leading glueball trajectory which is associated with Pomeron is discussed in details and its mixing with f and f' trajectories is taken into account.Comment: LaTeX2e, 49 pages, 2 figure

    Decay constants of the heavy-light mesons from the field correlator method

    Get PDF
    Meson Green's functions and decay constants fΓf_{\Gamma} in different channels Γ\Gamma are calculated using the Field Correlator Method. Both, spectrum and fΓf_\Gamma, appear to be expressed only through universal constants: the string tension σ\sigma, αs\alpha_s, and the pole quark masses. For the SS-wave states the calculated masses agree with the experimental numbers within ±5\pm 5 MeV. For the DD and DsD_s mesons the values of fP(1S)f_{\rm P} (1S) are equal to 210(10) and 260(10) MeV, respectively, and their ratio fDs/fDf_{D_s}/f_D=1.24(3) agrees with recent CLEO experiment. The values fP(1S)=182,216,438f_{\rm P}(1S)=182, 216, 438 MeV are obtained for the BB, BsB_s, and BcB_c mesons with the ratio fBs/fBf_{B_s}/f_B=1.19(2) and fD/fBf_D/f_B=1.14(2). The decay constants fP(2S)f_{\rm P}(2S) for the first radial excitations as well as the decay constants fV(1S)f_{\rm V}(1S) in the vector channel are also calculated. The difference of about 20% between fDsf_{D_s} and fDf_D, fBsf_{B_s} and fBf_B directly follows from our analytical formulas.Comment: 37 pages, 10 tables, RevTeX

    A consistent treatment for pion form factors in space-like and time-like regions

    Get PDF
    We write down some relevant matrix elements for the scattering and decay processes of the pion by considering a quark-meson vertex function. The pion charge and transition form factors FπF_\pi, FπγF_{\pi\gamma}, and FπγF_{\pi\gamma^*} are extracted from these matrix elements using a relativistic quark model on the light-front. We found that, the form factors FπF_\pi and FπγF_{\pi\gamma} in the space-like region agree well with experiment. Furthermore, the branching ratios of all observed decay modes of the neutral pion, that are related to the form factors FπγF_{\pi\gamma} and FπγF_{\pi\gamma^*} in the time-like region, are all consistent with the data as well. Additionally, FπF_\pi in the time-like region, which deals with the nonvalence contribution, is also discussed.Comment: 24 pages, 6 figures, to appear in Phys. Rev.

    Dislocation-Mediated Melting: The One-Component Plasma Limit

    Full text link
    The melting parameter Γm\Gamma_m of a classical one-component plasma is estimated using a relation between melting temperature, density, shear modulus, and crystal coordination number that follows from our model of dislocation-mediated melting. We obtain Γm=172±35,\Gamma_m=172\pm 35, in good agreement with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe

    Melting of the classical bilayer Wigner crystal: influence of the lattice symmetry

    Get PDF
    The melting transition of the five different lattices of a bilayer crystal is studied using the Monte-Carlo technique. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures, which is a consequence of the specific topology of the temperature induced defects. A new melting criterion is formulated which we show to be universal for bilayers as well as for single layer crystals.Comment: 4 pages, 5 figures (postscript files). Accepted in Physical Review Letter
    corecore