1,934 research outputs found
Collective modes and correlations in one-component plasmas
The static and time-dependent potential and surface charge correlations in a
plasma with a boundary are computed for different shapes of the boundary. The
case of a spheroidal or spherical one-component plasma is studied in detail
because experimental results are available for such systems. Also, since there
is some knowlegde both experimental and theoretical about the electrostatic
collective modes of these plasmas, the time-dependent correlations are computed
using a method involving these modes.Comment: 20 pages, plain TeX, submitted to Phys. Rev.
Sustaining Collection Value: Managing Collection/Item Metadata Relationships
Many aspects of managing collection/item metadata relationships are critical to sustaining collection value over time. Metadata at the collection-level not only provides context for finding, understanding, and using the items in the collection, but is often essential to the particular research and scholarly activities the collection is designed to support. Contemporary retrieval systems, which search across collections, usually ignore collection level metadata. Alternative approaches, informed by collection-level information, will require an understanding of the various kinds of relationships that can obtain between collection-level and item-level metadata. This paper outlines the problem and describes a project that is developing a logic-based framework for classifying collection-level/item-level metadata relationships. This framework will support (i) metadata specification developers defining metadata elements, (ii) metadata librarians describing objects, and (iii) system designers implementing systems that help users take advantage of collection-level metadata.Institute for Museum and Libary Services (Grant #LG06070020)published or submitted for publicationis peer reviewe
Decoherence in Ion Trap Quantum Computers
The {\it intrinsic} decoherence from vibrational coupling of the ions in the
Cirac-Zoller quantum computer [Phys. Rev. Lett. {\bf 74}, 4091 (1995)] is
considered. Starting from a state in which the vibrational modes are at a
temperature , and each ion is in a superposition of an excited and a ground
state, an adiabatic approximation is used to find the inclusive probability
for the ions to evolve as they would without the vibrations, and for the
vibrational modes to evolve into any final state. An analytic form is found for
at , and the decoherence time is found for all . The decoherence
is found to be quite small, even for 1000 ions.Comment: 11 pages, no figures, uses revte
Entanglement of distant atoms by projective measurement: The role of detection efficiency
We assess proposals for entangling two distant atoms by measurement of
emitted photons, analyzing how their performance depends on the photon
detection efficiency. We consider schemes based on measurement of one or two
photons and compare them in terms of the probability to obtain the detection
event and of the conditional fidelity with which the desired entangled state is
created. Based on an unravelling of the master equation, we quantify the
parameter regimes in which one or the other scheme is more efficient, including
the possible combination of the one-photon scheme with state purification. In
general, protocols based on one-photon detection are more efficient in set-ups
characterized by low photon detection efficiency, while at larger values
two-photon protocols are preferable. We give numerical examples based on
current experiments.Comment: 12 pages, 6 figure
Non-positivity of Groenewold operators
A central feature in the Hilbert space formulation of classical mechanics is
the quantisation of classical Liouville densities, leading to what may be
termed term Groenewold operators. We investigate the spectra of the Groenewold
operators that correspond to Gaussian and to certain uniform Liouville
densities. We show that when the classical coordinate-momentum uncertainty
product falls below Heisenberg's limit, the Groenewold operators in the
Gaussian case develop negative eigenvalues and eigenvalues larger than 1.
However, in the uniform case, negative eigenvalues are shown to persist for
arbitrarily large values of the classical uncertainty product.Comment: 9 pages, 1 figures, submitted to Europhysics Letter
Quantification of Cell Movement Reveals Distinct Edge Motility Types During Cell Spreading
Actin-based motility is central to cellular processes such as migration, bacterial engulfment, and cancer metastasis, and requires precise spatial and temporal regulation of the cytoskeleton. We studied one such process, fibroblast spreading, which involves three temporal phases: early, middle, and late spreading, distinguished by differences in cell area growth. In these studies, aided by improved algorithms for analyzing edge movement, we observed that each phase was dominated by a single, kinematically and biochemically distinct cytoskeletal organization, or motility type. Specifically, early spreading was dominated by periodic blebbing; continuous protrusion occurred predominantly during middle spreading; and periodic contractions were prevalent in late spreading. Further characterization revealed that each motility type exhibited a distinct distribution of the actin-related protein VASP, while inhibition of actin polymerization by cytochalasin D treatment revealed different dependences on barbed-end polymerization. Through this detailed characterization and graded perturbation of the system, we observed that although each temporal phase of spreading was dominated by a single motility type, in general cells exhibited a variety of motility types in neighboring spatial domains of the plasma membrane edge. These observations support a model in which global signals bias local cytoskeletal biochemistry in favor of a particular motility type
Nonperturbative study of generalized ladder graphs in a \phi^2\chi theory
The Feynman-Schwinger representation is used to construct scalar-scalar bound
states for the set of all ladder and crossed-ladder graphs in a \phi^2\chi
theory in (3+1) dimensions. The results are compared to those of the usual
Bethe-Salpeter equation in the ladder approximation and of several
quasi-potential equations. Particularly for large couplings, the ladder
predictions are seen to underestimate the binding energy significantly as
compared to the generalized ladder case, whereas the solutions of the
quasi-potential equations provide a better correspondence. Results for the
calculated bound state wave functions are also presented.Comment: 5 pages revtex, 3 Postscripts figures, uses epsf.sty, accepted for
publication in Physical Review Letter
Quantum Mechanics as an Approximation to Classical Mechanics in Hilbert Space
Classical mechanics is formulated in complex Hilbert space with the
introduction of a commutative product of operators, an antisymmetric bracket,
and a quasidensity operator. These are analogues of the star product, the Moyal
bracket, and the Wigner function in the phase space formulation of quantum
mechanics. Classical mechanics can now be viewed as a deformation of quantum
mechanics. The forms of semiquantum approximations to classical mechanics are
indicated.Comment: 10 pages, Latex2e file, references added, minor clarifications mad
Deterministic single-photon source from a single ion
We realize a deterministic single-photon source from one and the same calcium
ion interacting with a high-finesse optical cavity. Photons are created in the
cavity with efficiency (88 +- 17)%, a tenfold improvement over previous
cavity-ion sources. Results of the second-order correlation function are
presented, demonstrating a high suppression of two-photon events limited only
by background counts. The cavity photon pulse shape is obtained, with good
agreement between experiment and simulation. Moreover, theoretical analysis of
the temporal evolution of the atomic populations provides relevant information
about the dynamics of the process and opens the way to future investigations of
a coherent atom-photon interface
- …