34 research outputs found

    Effector and Central Memory Poly-Functional CD4+ and CD8+ T Cells are Boosted upon ZOSTAVAX® Vaccination

    Get PDF
    ZOSTAVAX® is a live attenuated varicella-zoster virus (VZV) vaccine that is licensed for the protection of individuals ≥ 50 years against shingles, and its most common complication, post-herpetic neuralgia. While IFN responses increase upon vaccination, the quality of the T cell response has not been elucidated. By using polychromatic flow cytometry, we characterized the breadth, magnitude, and quality of ex vivo CD4+ and CD8+ T cell responses induced 3 – 4 weeks after ZOSTAVAX vaccination of healthy adults. We show, for the first time that the highest frequencies of VZV-specific CD4+ T cells were poly-functional CD154+IFNγ+IL-2+TNFα+ cells, which were boosted upon vaccination. The CD4+ T cells were broadly reactive to several VZV proteins, with IE63 ranking the highest amongst them in the fold-rise of poly-functional cells, followed by IE62, gB, ORF9, and gE. We identified a novel poly-functional ORF9-specific CD8+ T cell population in 62% of the subjects, and these were boosted upon vaccination. Poly-functional CD4+ and CD8+ T cells produced significantly higher levels of IFNγ, IL-2, and TNFα compared to mono-functional cells. After vaccination, a boost in the expression of IFN by poly-functional IE63-and ORF9-specific CD4+ T cells, and IFNγ, IL-2, and TNFα by ORF9-specific poly-functional CD8+ T cells was observed. Responding poly-functional T cells exhibited both effector (CCR7−CD45RA−CD45RO+), and central (CCR7+CD45RA−CD45RO+) memory phenotypes, which expressed comparable levels of cytokines. Altogether, our studies demonstrate that a boost in memory poly-functional CD4+ T cells, and ORF9-specific CD8+ T cells may contribute towards ZOSTAVAX efficacy

    Vaccination with Ad5 Vectors Expands Ad5-Specific CD8+ T Cells without Altering Memory Phenotype or Functionality

    Get PDF
    Adenoviral (Ad) vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+) T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+) T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone.Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5)-specific CD8(+) T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+) T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+) T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb) seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+) T-cells.These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+) T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1].ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680]

    Mapping HIV-1 Vaccine Induced T-Cell Responses: Bias towards Less-Conserved Regions and Potential Impact on Vaccine Efficacy in the Step Study

    Get PDF
    T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1

    Environmental Risk Assessment for rVSVΔG-ZEBOV-GP, a Genetically Modified Live Vaccine for Ebola Virus Disease

    No full text
    rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19

    Development of Pandemic Vaccines: ERVEBO Case Study

    No full text
    Preventative vaccines are considered one of the most cost-effective and efficient means to contain outbreaks and prevent pandemics. However, the requirements to gain licensure and manufacture a vaccine for human use are complex, costly, and time-consuming. The 2013–2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak to date and the third Public Health Emergency of International Concern in history, so to prevent a pandemic, numerous partners from the public and private sectors combined efforts and resources to develop an investigational Zaire ebolavirus (EBOV) vaccine candidate (rVSVΔG-ZEBOV-GP) as quickly as possible. The rVSVΔG-ZEBOV-GP vaccine was approved as ERVEBOTM by the European Medicines Authority (EMA) and the United States Food and Drug Administration (FDA) in December 2019 after five years of development. This review describes the development program of this EBOV vaccine, summarizes what is known about safety, immunogenicity, and efficacy, describes ongoing work in the program, and highlights learnings applicable to the development of pandemic vaccines

    Broad Cross-Clade T-Cell Responses to Gag in Individuals Infected with Human Immunodeficiency Virus Type 1 Non-B Clades (A to G): Importance of HLA Anchor Residue Conservation

    No full text
    We aimed to identify cross-clade human immunodeficiency virus type 1 (HIV-1) specific T-cell responses among 10 HLA-typed individuals who were infected with non-B HIV-1 strains (A, AG, C, D, G, or F) and to correlate these responses with genetic variation in documented T-cell epitopes. T-cell reactivity was tested against peptide pools spanning clade B Gag, Pol, Nef, Rev, and Tat consensus, with Gag and Nef providing the highest responses. Nine individuals who responded to clade B Gag demonstrated cross-reactive T-cell responses against clade A and C Gag pools, while six of seven responders to Nef-B reacted to clade A and C Nef pools. An inverse correlation between the height of the T-cell responses and the sequence divergence of the HLA class I-restricted epitopes was identified when we compared autologous Gag and Nef sequences with the reactive consensus pools. This could be explained for the Gag sequences through observed variations in the HLA anchor residues. Through mapping of 30 amino acid cross-clade-reactive regions using Gag-B pools, we were able to link 58% (14/24) of the T-cell responses to regions containing previously described HLA class I-restricted epitopes. Forty-two percent (10/24) of the responses were directed to regions containing new epitopes, for which predicted HLA class I motifs could be recognized in 70% (7/10) of individuals. We demonstrate here that cross-clade T-cell responses are frequently induced in individuals infected with distinct HIV-1 clades, suggesting that interclade variation outside of HLA anchor residues may have less impact on vaccine-induced T-cell reactivity than previously thought

    DNA gag/Adenovirus Type 5 (Ad5) gag and Ad5 gag/Ad5 gag Vaccines Induce Distinct T-Cell Response Profilesâ–¿

    No full text
    Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed

    Immunogenicity and safety of an investigational tetravalent recombinant subunit vaccine for dengue: results of a Phase I randomized clinical trial in flavivirus-naïve adults

    No full text
    There is an unmet medical need for vaccines to prevent dengue. V180 is an investigational recombinant subunit vaccine that consists of truncated dengue envelope proteins (DEN-80E) for all 4 serotypes. Three dosage levels of the tetravalent DEN-80E antigens were assessed in a randomized, placebo-controlled, Phase I dose-escalation, first-in-human proof-of-principle trial in healthy, flavivirus-naïve adults in Australia (NCT01477580). The 9 V180 formulations that were assessed included either ISCOMATRIX™ adjuvant (2 dosage levels), aluminum-hydroxide adjuvant, or were unadjuvanted, and were compared to phosphate-buffered saline placebo. Volunteers received 3 injections of assigned product on a 0, 1, 2 month schedule, and were followed for safety through 1 year after the last injection. Antibody levels were assessed at 6 time-points: enrollment, 28 days after each injection, and 6 and 12 months Postdose 3 (PD3). Of the 98 randomized participants, 90 (92%) received all 3 injections; 83 (85%) completed 1-year follow-up. Immunogenicity was measured by a qualified Focus Reduction Neutralization Test with a 50% neutralization cutoff (FRNT50). All 6 V180 formulations with ISCOMATRIX™ adjuvant showed robust immunogenicity, while the 1 aluminum-adjuvanted and 2 unadjuvanted formulations were poorly immunogenic. Geometric mean antibody titers generally declined at 6 months and 1 year PD3. All 9 V180 formulations were generally well tolerated. Formulations with ISCOMATRIX™ adjuvant were associated with more adverse events than aluminum-adjuvanted or unadjuvanted formulations
    corecore