9 research outputs found

    Nutrient Movements through Ruminant Livestock Production Systems

    Get PDF
    Considerable attention has been paid to reducing nutrient emissions from ruminant livestock in the last few decades. This area will continue to attract considerable research in the future due to increasing farm sizes in some developed countries as well as the increasing demand for meat and dairy products, particularly in developing countries. This paper discusses the deposition and losses of carbon and nitrogen in soils and plants in grazed and harvested forage systems as well as utilization and losses of both nutrients by ruminants in both systems. The paper also outlines several soil, plant, and animal-focused strategies that can be used to reduce carbon and nitrogen losses from ruminant livestock systems. These strategies will become increasingly important due to the need to feed the growing population of the world while reducing environmental pollution from ruminant livestock systems

    Short-Term Soil Organic Matter and Carbon Responses to Contrasting Grazing Intensities in Integrated Crop-Livestock Systems

    Get PDF
    Combining integrated crop-livestock systems under no-till management may improve soil organic matter (SOM) build up and improve soil C sequestration. Grazing cover crops appears as a possibility to combine crops and livestock in a farm system. Further SOM and soil C increase can be achieved by adding perennial grasses into crop rotations. However, the effect of grazing intensity in such systems are not fully understood. This 2-yr study investigated short-term effects of cropping system [winter cover crops-summer cotton (Gossypium hirsutum L.) and winter cover crops-summer bahiagrass (Paspalum notatum FlĂŒggĂ©) rotations], grazing intensity (no grazing, heavy, moderate, and light grazing), and N fertilization (34 and 90 kg N ha-1 ), on OM and soil C of the soil-surface (0-15 cm) and deep-soil (0-90 cm) under no-till. Preliminary results indicate that treatments containing bahiagrass improved SOM in 1.5 g kg-1 compared to winter grazing on cover crops-cotton systems (P = 0.017). There were no differences among treatments for soil total C stock (15.4 Mg ha-1) and particulate OM-C (4.8 Mg ha-1) at the 15-cm depth (P \u3e 0.1). Carbon concentration increased from 8.0 to 12.6 g kg-1 as aggregate fraction decreased from 250 – 2000 to \u3c 53 ”m (P \u3c 0.001). Nonetheless, C stock was not affected by aggregate fraction, with each fraction containing 3.8 Mg C ha-1, on average. Carbon stocks from 0-15, 15-30, 30-60, and 60-90-cm depths did not differ among treatments (P = 0.743), totalizing 30.4 Mg C ha-1 in the soil profile. Long-term studies are necessary to better understand the role of cropping system and grazing intensities on soil OM and C responses on surface and deep soil

    Below Ground Benefits of Cactus \u3ci\u3eOpuntia stricta\u3c/i\u3e Under Rangeland Conditions in Laikipia, Kenya

    Get PDF
    Cactus Opuntia stricta primarily invades arid and semi-arid lands (ASALs), which form more than 80% of Kenya’s landmass. The ability of the plant to tolerate poor soils and accumulate biomass under low precipitation has resulted in studies into its potential use by pastoral communities for biofuel and livestock feed. However, few studies have assessed the below-ground benefits associated with cactus under rangeland conditions. In this study, we evaluated the root contributions of the invasives cactus Opuntia stricta under rangeland conditions in Laikipia, Kenya. The experiment was laid out in a randomized complete block design with ten (10) replicates, each measuring 30 × 30 m. Each block was further subdivided into three plots of 10 x 30m Three clusters were randomly selected from each plot for roots and soil samples starting from the center of the cluster (C) to the outside in a gradient of three radii, R1, R2 and R3. Data was collected for root (dry root biomass, % carbon and % nitrogen) and soil (pH, bulk density, % moisture and % nitrogen) characteristics. Significant differences in total root mass, root carbon, and root nitrogen were observed under varying cluster gradients. Root mass ranged from 4527.0 to 9242.0 kg/ha for the outermost radius (R3) and the cluster’s center, respectively. Similarly, except for the soil nitrogen, statistical differences were observed for soil bulk density, percent soil moisture and percent nitrogen along the different cluster gradients. The soil bulk density ranged from 1.2±0.02 (center) to 1.5±0.01 g cm3 (radius 2). Findings from this study demonstrate the important contribution of the invasive cactus species in sustaining the ecological functions of rangeland soils such as those found in Laikipia, Kenya

    Using On-Farm Demonstrations to Evaluate Newly Developed Cool-Season Forages in the Southeastern USA

    Get PDF
    Multiple demonstration sites throughout Florida were designed to evaluate and provide hands-on producer and county faculty access to newly developed cool-season winter forage crops that can be grown in the southeastern United States. Research funding for these projects was provided by the Dairy Research and Education Project, supported through the Georgia/Florida Dairy Industry check-off dollars. Early adopter producers interested in evaluating forages were identified for this cooperation. Long-term goals are to have the early adopter producer aid in the trialing and dissemination of information about improved varieties. Cool-season forages for use on southeastern US livestock operations benefit the producer in providing highly nutritional greenchop or silage crop for livestock, winter cover to provide erosion and leaching protection on cultivated acreage, potentially recycle nutrients or remove significant nutrients from the forage system, and serve as a sentinel plots to help identify new or emerging pest problems related to forage production. We also focus developing forages for both low and high end input systems that address environmental issues related to N and P in the soils. In the southeastern U.S. particularly in Florida, nitrogen and phosphorus accumulate in many production fields and these nutrients impact surface and ground water resources. We participate with the Florida Department of Agriculture and the dairy and beef cattle industry to develop “best management practices” (BMPs) that guide producers to lessen their negative impacts on the environment and improve upon their operation’s sustainability and economic returns. This effort has led to the release of new cultivars from the University of Florida’s Forage Program. While we focus, primarily, on cool-season small grains and ryegrass, our program also includes breeding other subtropical forage species for adaptation to our environment and to improve adoption of BMPs

    Pernambuco Semiarid Native Rhizobial Populations Nitrogen Fixation Potential with Native \u3cem\u3eMacroptilium\u3c/em\u3e

    Get PDF
    Nitrogen (N) is one of natureÂŽs most abundant elements, accounting for about 78% of the atmospheric gases, but mostly as the inert N2 form. As such it is not directly available to plants, and is relatively scarce in most agroecosystems. Biological nitrogen fixation (BNF) through diazotrophic bacteria represents ca. 63% of the yearly N input in terrestrial ecosystems (Taiz and Zeiger 2004). Legumes which form effective symbiosis with the diazotrophic group of bacteria commonly known as rhizobia, are a very important source of available N. Tropical forage legumes are usually able to nodulate with a diverse population of rhizobia, and may have a relevant contribution to nitrogen availability in pastures (Santos et al. 2003). This diversity may be exploited to find more symbiotically efficient bacterial strains, thereby increasing legume effects on pastures. One way to evaluate this diversity is to isolate strains from different regions, vegetation covers or cultivation systems, and environmental conditions. This practice would potentially lead to a large number of isolates, which would increase the chance of finding some more efficient than those currently available (Chagas Junior et al, 2010). Native legumes, including several species of Macroptilium are an important forage resource in the Brazilian Northeast semiarid, contributing to the quality of ruminant diet, but they are still not well known in regards to their BNF ability. This work evaluated nodulation efficiency of Macroptilium lathyroides when inoculated with Litolic Neossol from eight municipalities of Pernambuco State semiarid

    Enhancing the Sustainability of Temperate Pasture Systems through More Diverse Swards

    No full text
    Temperate grasslands can be highly productive. However, those that are productive are generally heavily dependent on high inputs of nitrogen (N) fertilizer. Including legumes such as white clover (Trifolium repens L.) in the sward can reduce reliance on N fertilizer. Recent investigations have evaluated the potential of multispecies swards, which are defined as agronomically improved grasslands that include multiple plant functional groups, e.g., grasses, legumes, and forage forbs. Several of the benefits and challenges of multispecies swards are summarized in this review. To date, the most prominent forb species included in multispecies swards are chicory (Cichorum intybus L.) and ribgrass/ribwort plantain (Plantago lanceolata L.). Multispecies swards grown under reduced N fertilizer input conditions can produce as much biomass as monocultures receiving large quantities of N fertilizer. The nutritive value of multispecies swards may potentially be greater than grass-only swards, especially since forbs may contribute additional micro and macro minerals to livestock diet. While challenges associated with multispecies swards may include weed management and facilitating persistence of the forb species in particular, the overall evidence suggests that well-managed multispecies swards can enhance the productivity as well as environmental sustainability of grazing systems

    Carbon footprint of beef cattle systems in the Southeast United States

    No full text
    Grasslands in the Southeast United States (SE US) cover 15.8 million ha and most of this area is dedicated to beef production systems. This region holds 6.3 million beef cows and 12.1 million cattle, including calves. Beef cattle systems in the SE US are mostly cow-calf based, and most of the greenhouse gas emission from cattle occurs during this phase (cow-calf) because of their forage-based diet. This review assessed the carbon footprint (C footprint) of beef cattle systems in the SE US and indicates possible ways to reduce it. Major emissions in beef cattle systems come from livestock enteric fermentation and greenhouse gases from excreta. Cow-calf systems in the SE US are typically low input, although they use some industrial fertilizers, machinery, and fossil fuel, which adds to the C footprint of the sector. There are opportunities to reduce the beef C footprint in the SE US by adopting climate-smart practices, including preservation of natural ecosystems that have potentially high carbon sequestration, afforestation, integration of forage legumes (and reduction of nitrogen fertilizer), use of slow-release fertilizers, and dietary interventions. In fact, depending on the level of adoption of some of these practices, it is possible to establish climate-neutral beef at the farm gate in the SE US. Beef is a key food for humans and has large economic effects. Development of climate-smart beef could create opportunities for a niche market that recognizes the environmental footprint of agricultural production and could incentivize producers to pursue those systems

    Effects of rhizoma peanut cultivars (Arachis glabrata Benth.) on the soil bacterial diversity and predicted function in nitrogen fixation

    No full text
    There is a growing awareness of the importance of soil microorganisms in agricultural management practices. Currently, much less is known about whether different crop cultivar has an effect on the taxonomic structure and diversity, and specific functions of soil bacterial communities. Here, we examined the changes of the diversity and composition and enzyme-encoding nitrogenase genes in a long-term field experiment with seven different rhizoma peanut cultivars in southeastern USA, coupling high-throughput 16S rRNA gene sequencing and the sequence-based function prediction with Tax4Fun. Of the 32 phyla detected (Proteobacteria class), 13 were dominant: Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Deltaproteobacteria, Gemmatimonadetes, Firmicutes, Nitrospirae, Chloroflexi, and Planctomycetes (relative abundance >1%). We found no evidence that the diversity and composition of bacterial communities were significantly different among different cultivars, but the abundance of some dominant bacterial groups that have N-fixation potentials (at broad or fine taxonomic level) and predicted abundances of some enzyme-encoding nitrogenase genes showed significant across-cultivar differences. The nitrogenase genes were notably abundant in Florigraze and Latitude soils while remarkably lower in Arbook and UF_TITO soils when compared with other cultivars, indicating different nitrogen fixation potentials among different cultivars. The findings also suggest that the abundance of certain bacterial taxa and the specific function bacteria perform in ecosystems can have an inherent association. Our study is helpful to understand how microbiological responses and feedback to different plant genotypes through the variation in structure and function of their communities in the rhizosphere
    corecore