678 research outputs found

    Genes and gene networks regulating wheat development

    Get PDF

    Transcriptional signatures of wheat inflorescence development

    Get PDF
    In order to maintain global food security, it will be necessary to increase yields of the cereal crops that provide most of the calories and protein for the world’s population, which includes common wheat (Triticum aestivum L.). An important wheat yield component is the number of grain-holding spikelets which form on the spike during inflorescence development. Characterizing the gene regulatory networks controlling the timing and rate of inflorescence development will facilitate the selection of natural and induced gene variants that contribute to increased spikelet number and yield. In the current study, co-expression and gene regulatory networks were assembled from a temporal wheat spike transcriptome dataset, revealing the dynamic expression profiles associated with the progression from vegetative meristem to terminal spikelet formation. Consensus co-expression networks revealed enrichment of several transcription factor families at specific developmental stages including the sequential activation of different classes of MIKC-MADS box genes. This gene regulatory network highlighted interactions among a small number of regulatory hub genes active during terminal spikelet formation. Finally, the CLAVATA and WUSCHEL gene families were investigated, revealing potential roles for TtCLE13, TtWOX2, and TtWOX7 in wheat meristem development. The hypotheses generated from these datasets and networks further our understanding of wheat inflorescence developme

    Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence

    Get PDF
    BACKGROUND: During wheat senescence, leaf components are degraded in a coordinated manner, releasing amino acids and micronutrients which are subsequently transported to the developing grain. We have previously shown that the simultaneous downregulation of Grain Protein Content (GPC) transcription factors, GPC1 and GPC2, greatly delays senescence and disrupts nutrient remobilization, and therefore provide a valuable entry point to identify genes involved in micronutrient transport to the wheat grain. RESULTS: We generated loss-of-function mutations for GPC1 and GPC2 in tetraploid wheat and showed in field trials that gpc1 mutants exhibit significant delays in senescence and reductions in grain Zn and Fe content, but that mutations in GPC2 had no significant effect on these traits. An RNA-seq study of these mutants at different time points showed a larger proportion of senescence-regulated genes among the GPC1 (64%) than among the GPC2 (37%) regulated genes. Combined, the two GPC genes regulate a subset (21.2%) of the senescence-regulated genes, 76.1% of which are upregulated at 12 days after anthesis, before the appearance of any visible signs of senescence. Taken together, these results demonstrate that GPC1 is a key regulator of nutrient remobilization which acts predominantly during the early stages of senescence. Genes upregulated at this stage include transporters from the ZIP and YSL gene families, which facilitate Zn and Fe export from the cytoplasm to the phloem, and genes involved in the biosynthesis of chelators that facilitate the phloem-based transport of these nutrients to the grains. CONCLUSIONS: This study provides an overview of the transport mechanisms activated in the wheat flag leaf during monocarpic senescence. It also identifies promising targets to improve nutrient remobilization to the wheat grain, which can help mitigate Zn and Fe deficiencies that afflict many regions of the developing world.Fil: Pearce, Stephen. University of California; Estados UnidosFil: Tabbita, Facundo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro de InvestigaciĂłn de Recursos Naturales. Instituto de Recursos BiolĂłgicos; ArgentinaFil: Cantu, Dario. University of California; Estados UnidosFil: Buffalo, Vince. University of California; Estados UnidosFil: Avni, Raz. Tel Aviv University; IsraelFil: Vazquez Gross, Hans. University of California; Estados UnidosFil: Zhao, Rongrong. China Agricultural University; ChinaFil: Conley, Christopher J.. University of California; Estados UnidosFil: Distelfeld, Assaf. Faculty Of Life Sciences, Department Of Molecular Biolo;Fil: Dubcovsky, Jorge. University of California; Estados Unidos. Howard Hughes Medical Institute ; Estados Unidos. Gordon & Betty Moore Foundation Investigator; Estados Unido

    Physical map of the Eps-Am1 gene region in Triticum monococcum L.

    Get PDF

    Development of PCR markers for wheat leaf rust resistance gene Lr47

    Full text link
    • …
    corecore