124 research outputs found

    Characterization of human prostate-specific transglutaminase

    Get PDF

    Characterization of human prostate-specific transglutaminase

    Get PDF

    Characterization of Human Prostate-Specific Transglutamiuase

    Get PDF

    Mitochondrial D310 mutation as clonal marker for solid tumors

    Get PDF

    Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase

    Get PDF
    Transglutaminases (TGases) are calcium-dependent enzymes catalysing the post-translational cross-linking of proteins. In the prostate at least two TGases are present, the ubiquitously expressed tissue-type TGase (TGC), and a prostate-restricted TGase (TGP). This paper deals with the molecular cloning and characterization of the cDNA encoding the human prostate TGase (hTGP). For this purpose we have screened a human prostate cDNA library with a probe from the active-site region of TGC. The largest isolated cDNA contained an open reading frame encoding a protein of 684 amino acids with a predicted molecular mass of 77 kDa as confirmed by in vitro transcription-translation and subsequent SDS/PAGE. The hTGP gene was tissue-specifically expressed in the prostate, yielding an mRNA of approx. 3.5 kb. Furthermore, a 3-fold androgen-induced upregulation of hTGP mRNA expression has been demonstrated in the recently developed human prostate cancer cell line, PC346C. Other well established human prostate cancer cell lines, LNCaP and PC-3, showed no detectable hTGP mRNA expression on a Northern bolt. The gene coding for prostate TGase was assigned to chromosome 3

    The aroA gene of Campylobacter jejuni

    Get PDF
    The gene for 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (aroA) cloned from Campylobacter jejuni (Cj) strain 81116 was identified by complementation of an Escherichia coli (Ec) auxotrophic aroA mutant. The Cj aroA gene has been sequenced. It encodes an enzyme of 428 amino acids (aa), that is homologous to other bacterial EPSP synthases, especially that of Bacillus subtilis with which it has a 39% aa identity. The transcriptional start point was mapped. It is present in an upstream open reading frame (ORF) that has a strong homology to the gene encoding phenylalanine tRNA synthetase (pheS). Downstream from aroA another ORF is present which is homologous to the lytB gene of Ec. The stop codon of the aroA gene overlaps the start codon of lytB

    Amino acids 3-13 and amino acids in and flanking the 23FxxLF27 motif modulate the interaction between the N-terminal and ligand-binding domain of the androgen receptor

    Get PDF
    The N-terminal domain (NTD) and the ligand-binding domain (LBD) of the androgen receptor (AR) exhibit a ligand-dependent interaction (N/C interaction). Amino acids 3-36 in the NTD (AR3-36) play a dominant role in this interaction. Previously, it has been shown that a PhixxPhiPhi motif in AR3-36, 23FxxLF27, is essential for LBD interaction. We demonstrate in the current study that AR3-36 can be subdivided into two functionally distinct fragments: AR3-13 and AR16-36. AR3-13 does not directly interact with the AR LBD, but rather contributes to the transactivation function of the AR.NTD-AR.LBD complex. AR16-36, encompassing the 23FxxLF27 motif, is predicted to fold into a long amphipathic alpha-helix. A second PhixxPhiPhi candidate protein interaction motif within the helical structure, 30VREVI34, shows no affinity to the LBD. Within AR16-36, amino acid residues in and flanking the 23FxxLF27 motif are demonstrated to modulate N/C interaction. Substitution of Q24 and N25 by alanine residues enhances N/C interaction. Substitution of amino acids flanking the 23FxxLF27 motif by alanines are inhibitory to LBD interaction

    Mitochondrial D310 mutation as clonal marker for solid tumors

    Get PDF
    Patients with multiple tumors, either synchronous or metachronous, can have metastatic disease or suffer from multiple independent primary tumors. While proper diagnosis of these patients is important for prognosis and treatment, this can be challenging using only clinical and histological criteria. The aim of the present study was to evaluate the value of mitochondrial D310 mutation analysis in diagnostic questions regarding tumor clonality for a wide range of tumor types. Sanger sequencing of D310 was performed on a diagnostic cohort of 382 patients with 857 tumors that were previously analyzed using routine molecular analysis on genomic DNA. The D310 mononucleotide repea
    corecore