7 research outputs found

    Molecular evolution analysis of the human immunodeficiency virus type 1 envelope in simian/human immunodeficiency virus-infected macaques: implications for challenge dose selection

    No full text
    Since the demonstration that almost 80% of human immunodeficiency virus type 1 (HIV-1) infections result from the transmission of a single variant from the donor, biological features similar to those of HIV mucosal transmission have been reported for macaques inoculated with simian immunodeficiency virus (SIV). Here we describe the early diversification events and the impact of challenge doses on viral kinetics and on the number of variants transmitted in macaques infected with the chimeric simian/human immunodeficiency virus SHIV(sf162p4). We show that there is a correlation between the dose administered and the number of variants transmitted and that certain inoculum variants are preferentially transmitted. This could provide insight into the viral determinants of transmission and could aid in vaccine development. Challenge through the mucosal route with high doses results in the transmission of multiple variants in all the animals. Such an unrealistic scenario could underestimate potential intervention measures. We thus propose the use of molecular evolution analysis to aid in the determination of challenge doses that better mimic the transmission dynamics seen in natural HIV-1 infection

    Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    No full text
    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative virus isolation method was developed and evaluated in four chronically infected chimpanzees infected with a variety of HIV-1 related isolates. This assay was then used to monitor a group of chimpanzees (n = 6) challenged with HIV-1 following vaccination with gp120 or gp160. Data indicated that of the three vaccinated animals which became infected after challenge, the animal with the lowest neutralizing titre at the time of challenge acquired a virus load similar to the control animals, whereas the two other chimpanzees had reduced numbers of virus producing cells in their peripheral circulation. One animal became virus isolation negative, developed an indeterminant PCR signal on lymph node DNA and subsequently became negative for HIV-1 DNA as determined by PCR on PBMC (peripheral blood mononuclear cells) and bone marrow DNA. Recently, the second animal has also become PCR negative. To confirm observations from quantitative virus isolations, quantification of HIV-1 DNA in PBMC and virus RNA in serum was performed by PCR on serially diluted samples at two different time points. Comparison of virus load as determined by these three methods confirmed that there was an effect of vaccination in reducing virus load and demonstrated a correlation between decreased numbers of virus producing cells, HIV-1 DNA containing cells and virus RNA molecules in seru

    Comparison of protection from homologous cell-free vs cell-associated SIV challenge afforded by inactivated whole SIV vaccines.

    No full text
    This study attempted to determine if SIV vaccines could protect against challenge with peripheral blood mononuclear cells (PBMCs) from an SIV infected rhesus monkey. Mature Macaca mulatta were vaccinated four times with formalin inactivated SIVmac32H administered in MDP adjuvant (n = 8) or SIVmac32H ISCOM vaccine (n = 8). Controls included animals vaccinated with measles virus in MDP adjuvant (n = 4) or ISCOM (n = 4) preparations. Of each group, half were challenged intravenously (IV) with ten MID50 of the cell-free SIVmac32H (11-88) SIV stock and half were challenged with ten MID50 of PBMCs from the SIVmac32H infected macaque 1XC. All SIV vaccinated animals challenged with the 11-88 cell free stock of SIVmac32H were protected, whereas only half of the SIV vaccinated monkeys receiving the same infectious dose of the 1XC cell stock were protected

    Characteristics of primary infection of a European human immunodeficiency virus type 1 clade B isolate in chimpanzees

    No full text
    The aim of the study was to select, from a panel of candidate European human immunodeficiency virus type 1 (HIV-1) clade B primary virus isolates, one isolate based on replication properties in chimpanzee peripheral blood mononuclear cells (PBMC). Secondly, to evaluate the in vivo kinetics of primary infection of the selected isolate at two different doses in two mature, outbred chimpanzees (Pan troglodytes). Four different low passage, human PBMC-cultured 'primary' HIV-1 isolates with European clade B consensus sequence were compared for their ability to replicate in vitro in chimpanzee versus human PBMC. The isolate which yielded the highest titre and most vigorous cytopathic effect in chimpanzee PBMC was evaluated for coreceptor usage and chosen for evaluation in vivo. Only the HIV-1Han2 isolate replicated in chimpanzee PBMC in vitro at detectable levels. This isolate was demonstrated to utilize CCR4, CCR5 and CXCR4 coreceptors and could be inhibited by beta-chemokines. Infection of chimpanzees was demonstrated by viral RNA and DNA PCR analysis, both in plasma as well as in PBMC and lymph node cells as early as 3 weeks after inoculation. Antibodies developed within 6 weeks and continued to increase to a maximum titre of approximately 12800, thereafter remaining in this range over the follow-up period of 2 years. Compared to cell line-adapted HIV-1 isolates there were slight but no dramatic differences in the kinetics of infection of chimpanzees with this particular primary isolat
    corecore