8 research outputs found

    An Assessment of Contamination Fingerprinting Techniques for Determining the Impact of Domestic Wastewater Treatment Systems on Private Well Supplies

    Get PDF
    Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland. A one-off sampling and analysis campaign of 212 private wells found that 15% were contaminated with E. coli. More extensive monitoring of 24 selected wells found 58% to be contaminated with E. coli on at least one occasion over a 14-month period. The application of fingerprinting techniques to these monitored wells found that the use of chloride/bromide and potassium/sodium ratios is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, neither fluorescent whitening compounds nor caffeine were detected in any wells, and faecal sterol profiles proved inconclusive, suggesting limited suitability for the conditions investigated

    The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using laboratory-scale sequencing batch reactors (SBRs)

    No full text
    Little is known about the effect of anaerobic and anoxic stages on the protozoan community in the activated sludge process and how this subsequently affects performance. Using a laboratory-scale BNR system the effect of different periods of anoxia on both the protozoan community and performance efficiency have been examined. Four SBRs were operated at two cycles per day using a range of combined anoxic/anaerobic periods (0, 60, 120 to 200 min). Effluent quality (TOC, BOD, TP, TN, NH4-N, NO3-N and NO2-N), sludge settleability and ciliate community (species diversity and abundance) were analyzed over a periods of up to 24 days of operation. The species richness and total abundance of ciliates were found to decrease with longer anoxic/anaerobic periods. Both, positive and negative significant correlations between the abundance of certain species and the period of anoxia was observed (e.g. Opercularia microdiscum, Epicarchesium granulatum), although other species (i.e. Acineria uncinata, Epistylis sp.) were unaffected by exposure to anoxia. In the laboratory-scale units, the 60 minute anoxic/anaerobic period resulted in good process performance (TOC and BOD removal of 97 to 98% respectively), nitrification (80-90%), denitrification (52%) but poor levels of biological P removal (12%); with the protozoan community moderately affected but still diverse with high abundances. Increasing the length of anoxia to up to 200 min did not enhance denitrification although P removal rates increased to between 22-33%; however, ciliate species richness and total abundance both decreased and sludge settleability became poorer. The study shows that activated sludge ciliate protozoa display a range of tolerances to anoxia that result in altered ciliate communities depending on the length of combined anoxic/anaerobic periods within the treatment process. It is recommended that anoxic/anaerobic periods should be optimized to sustain the protozoan community while achieving maximum performance and nutrient removal

    Application of On-Site Wastewater Treatment in Ireland and Perspectives on Its Sustainability

    No full text
    The wastewater of one third of Ireland’s population is treated on-site using domestic treatment systems (DWWTSs) that usually consist of a septic tank and soil attenuation system. Within the past four years, the legislative framework for these systems has undergone a major change with a registration and inspection regime being introduced to identify legacy sites that will require remediation work, particularly in areas of the country underlain by subsoils of very low permeability. Against this background this study aims to assess the overall sustainability of existing DWWTSs as well as alternative treatment and disposal options. The results show that main CO2eq emissions are from the methane production in septic tanks. The reduced methane production in mechanically aerated secondary treatment systems was found to counterbalance the related emissions due to the additional energy requirements. In contrast, septic tank systems have the lowest construction and operational costs representing the most economically sustainable solution. Pressurised disposal systems are slightly more expensive but have the potential to reduce environmental impact on surface water and reduce greenhouse gas emissions. Clustered decentralised treatment solutions could be environmentally and economically sustainable but ownership, management and related financial and legal issues will need to be addressed and developed

    Characterisation of organic matter and its transformation processes in on-site wastewater effluent percolating through soil using fluorescence spectroscopic methods and parallel factor analysis (PARAFAC)

    Get PDF
    This research has used fluorescence spectroscopy and parallel factor analysis (PARAFAC) in order to characterize dissolved organic matter in septic tank effluent, as it passes through the biomat/biozone, infiltrating into the unsaturated zone beneath domestic wastewater treatment systems (DWWTSs). Septic tank effluent and soil moisture samples from the percolation areas of two DWWTSs have been analyzed using fluorescence excitation–emission spectroscopy. Using PARAFAC analysis, a six-component model was obtained whereby individual model components could be assigned to humified organic matter, fluorescent whitening compounds (FWCs), and protein-like compounds. This has shown that fluorescent dissolved organic matter (FDOM) in domestic wastewater was dominated by protein-like compounds and FWCs and that, with treatment in the percolation area, protein-like compounds and FWCs are removed and contributions from terrestrially derived (soil) organic decomposition compounds increase, leading to a higher degree of humification and aromaticity. The results also suggest that the biomat is the most important element determining FDOM removal and consequently affecting DOM composition. Furthermore, no significant difference was found in the FDOM composition of samples from the percolation area irrespective of whether they received primary or secondary effluent. Overall, the tested fluorometric methods were shown to provide information about structural and functional properties of organic matter which can be useful for further studies concerning bacterial and/or virus transport from DWWTSs

    Development of a geographic information system-based decision support toolset to assess the feasibility of on-site wastewater treatment and disposal options in low permeability subsoils

    Get PDF
    Traditional on-site wastewater treatment systems have proven to be unsuitable in areas of low permeability subsoils, representing a risk to human health and the environment. With large areas being covered by low permeability tills, Ireland needs to consider alternative treatment and disposal options to be able to allow further development in these areas and to deal with polluting legacy sites. The paper describes the development and structure of a geographic information system (GIS)-based decision support toolset to evaluate possible alternative strategies for these sites. The programme takes as its initial input the location of an existing house located in an area of low permeability subsoils. Through a series of interconnected GIS geoprocesses the model outputs appropriate solutions for a site, ranking them in terms of environmental sustainability and cost. However, the final decisions are still dependent on on-site constraints so that each solution is accompanied by an alert message that provides additional information for the user to refine the output list according to the available local site-specific information

    Assessment of the impact of traditional septic tank soakaway systems on water quality in ireland

    No full text
    One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil

    Assessment of the impact of traditional septic tank soakaway systems on water quality in ireland

    No full text
    One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil
    corecore