2 research outputs found

    Real-space entanglement spectrum of quantum Hall systems

    Full text link
    We study the real-space entanglement spectrum for fractional quantum Hall systems, which maintains locality along the spatial cut, and provide evidence that it possesses a scaling property. We also consider the closely-related particle entanglement spectrum, and carry out the Schmidt decomposition of the Laughlin state analytically at large size.Comment: 5 pages, 4 figures. V2: a bit more on non-locality of OP. V3: typos corrected; as publishe

    Entanglement in gapless resonating valence bond states

    Full text link
    We study resonating-valence-bond (RVB) states on the square lattice of spins and of dimers, as well as SU(N)-invariant states that interpolate between the two. These states are ground states of gapless models, although the SU(2)-invariant spin RVB state is also believed to be a gapped liquid in its spinful sector. We show that the gapless behavior in spin and dimer RVB states is qualitatively similar by studying the R\'enyi entropy for splitting a torus into two cylinders, We compute this exactly for dimers, showing it behaves similarly to the familiar one-dimensional log term, although not identically. We extend the exact computation to an effective theory believed to interpolate among these states. By numerical calculations for the SU(2) RVB state and its SU(N)-invariant generalizations, we provide further support for this belief. We also show how the entanglement entropy behaves qualitatively differently for different values of the R\'enyi index nn, with large values of nn proving a more sensitive probe here, by virtue of exhibiting a striking even/odd effect.Comment: 44 pages, 14 figures, published versio
    corecore